

Restricted diffusion of polarised ^3He gas in aerogels

Geneviève Tastevin¹, Pierre-Jean Nacher, Jamal Choukeife

Laboratoire Kastler Brossel, E.N.S., 24 rue Lhomond, F75005 Paris, France

Abstract

Polarised ^3He is used to non-destructively probe by NMR the structure of silica aerogels. Using laser optical pumping large spin-echo signals are obtained with small amounts of gas, even at low magnetic field. Attenuation induced by applied field gradients is measured for equivalent ^3He pressures ranging from 5 mbar to 3 bar. Systematic diffusion studies are performed by NMR on custom-made (98% porous) and commercial (97% porous) aerogels used by research groups to study quantum fluids in confined geometries. The observed pressure dependence suggests a non-uniform structure of both aerogel samples on length scales up to tens of microns.

Key words: Silica aerogel ; NMR ; spin diffusion

NMR diffusion studies are standard methods used to probe the microscopic structure of porous media. Measurements using a low density gas have been shown to potentially provide small-scale information on silica aerogels of the kind used in low temperature experiments [1–3]. This initial study of the effect of the gas pressure in a single aerogel sample revealed a non-uniform distribution of density of silica strands in this system, in contrast with the well-defined mean free path value obtained for diffusion in ^3He - ^4He dilute solutions [4]. We present an extended study over a broader range of gas pressures and in a second sample of different characteristics and origin.

The experiments are performed at room temperature and low magnetic field (2 mT) using hyperpolarised ^3He gas produced by laser optical pumping and transferred into the experimental cells using a dedicated peristaltic compressor [5]. Pressures $P_3 = 12\text{--}120$ mbar are used for experiments with pure ^3He gas. Partial pressures P_3 of order 30 mbar of polarised ^3He mixed with various amounts $P_{\text{N}2}$ of nitrogen (up to 1.2 bar) are used to study diffusion at high gas densities. Two samples have been studied. Sample “M” (prepared and provided by N. Mulders [2,3]) is a 98% porous

($22.9 \text{ m}^2/\text{cm}^3$) aerogel sample grown in a cylindrical glass cell (1.2 cm diameter, 3.7 cm height). Sample “A” (provided by G. Eska from Airglass, Staffanstorp, Sweden), is a 97% porous ($18.4 \text{ m}^2/\text{cm}^3$) aerogel cylindrical sample enclosed in a matching PMMA container (1.25 cm diameter, 1.1 cm height). An identical empty container is used as a reference cell for free diffusion measurements.

Spin diffusion is measured as described in [2,3] using a standard CPMG $\pi_x/2-(\pi_y)_n$ spin-echo sequence with period τ . Large (~ 10 cm) tipping coils are used to generate homogeneous pulses with negligible magnetisation loss (less than 10% after 1000 echoes in the absence of applied gradient). Small (~ 1 cm) detection coils are used for optimal signal to noise ratio with small samples. Pulsed field gradients $G=0\text{--}10 \mu\text{T}/\text{cm}$ are applied along the common axis of the cells and of the main field. The frequency spectra of the recorded echoes provide 1-D images of the gas magnetisation in the samples (figure 1, top). The shape of cell A is fairly well reproduced considering the spatial NMR resolution $2\pi/(\gamma G\delta)=0.7$ cm ($\gamma=2\pi\times 32.43 \text{ MHz/T}$ is the gyromagnetic ratio of ^3He nuclei and δ the gradient duration). The strongly reduced sensitivity of the detection coils for the ends of cell M is responsible for its smeared profile. The local magnetisation is found to ex-

¹ E-mail: tastevin@lkb.ens.fr

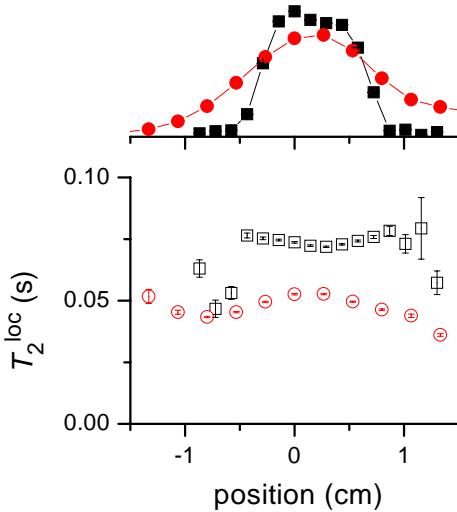


Fig. 1. Top : variations of signal intensities along the gradient axis in aerogels M (circles) and A (squares). Bottom : corresponding local decay times T_2^{loc} of a spin-echo train with $\tau=6$ ms and $G=9$ $\mu\text{T}/\text{cm}$.

ponentially decay, with slightly non-uniform lifetimes ($\pm 10\%$ see figure 1, bottom). This is small enough to accurately ascribe a single exponential decay time T_2 for the average magnetisation in the cell.

For free gas diffusion, the expected relation between T_2 , G and the diffusion coefficient D is $T_2=12/(\gamma G \delta)^2 f D$, in which f is a numerical pulse shape factor ($f=3-2\delta/\tau$ for negligible gradient rise-time). Scattering on N_2 molecules leads to an effect of the gas composition, which is accounted for using the equivalent pressure $P_3^{\text{eq}}=P_3+P_{\text{N}_2}D_3^1/D_{\text{N}_2}^1$, with $D_3^1=1895$ cm^2/s (resp. $D_{\text{N}_2}^1=780$ cm^2/s) the diffusion coefficient of ${}^3\text{He}$ (resp. of ${}^3\text{He}$ atoms in N_2) at 1 mbar and 293 K. $1/D$ and hence T_2 are expected to linearly depend on P_3^{eq} . Data for the empty reference cell obtained at various G and τ collapse on a straight line, with a slope corresponding to the expected value $1/D_3^1$ (figure 2). This provides a consistency check for our apparatus and measurement technique.

In figure 2 we have also plotted all aerogel data in reduced units introducing $1/D_{\text{eff}}=T_2(\gamma G \delta)^2 f/12$ (D_{eff} is an effective diffusion coefficient). The new data for cell M are consistent with our previous ones [2,3] and extend over a wider pressure range. Results in the other aerogel (cell A) show a strikingly stronger departure from the free diffusion behaviour, revealing a much more restricted gas diffusion.

The non-linear variation of decay times with pressure rules out a uniform density of scattering centres (the silica strands) in the aerogels. For both of them, a broad distribution of local mean free paths at scales smaller than our imaging resolution (over a range 0.1–100 μm) has to be assumed to account for the exper-

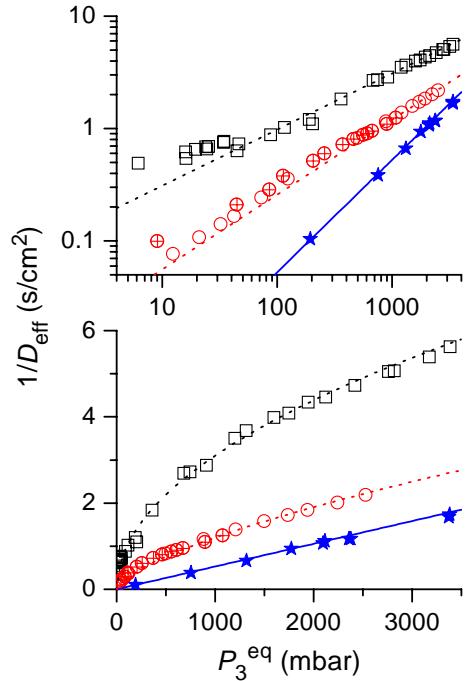


Fig. 2. The reduced data $1/D_{\text{eff}}$ (see text) are plotted as a function of the equivalent ${}^3\text{He}$ pressure P_3^{eq} both in linear and semi-logarithmic scales. Stars: measurements in the empty reference cell (free diffusion). Circles (resp. squares): measurements in aerogel sample M (resp. A). Crossed circles correspond to previous measurements [2,3]. The solid line P_3^{eq}/D_3^1 corresponds to the nominal free diffusion coefficient. The dotted lines are phenomenological power laws with exponents 0.5 (cell A) and 0.66 (cell M). $1/D_{\text{eff}}$ values are 2.5–5 times larger in cell A than in cell M.

imental observations [3]. These consistent results confirm the discrepancy with diffusion measurements in dilute solutions [4].

References

- [1] G. Tastevin, P.J. Nacher, G. Guillot, *Physica B* **284-288** (2000) 291.
- [2] G. Tastevin, P.J. Nacher, G. Guillot, *J. Low Temp. Phys.* **121** (2000) 773.
- [3] G. Guillot, P.J. Nacher, G. Tastevin, *Magn. Reson. Imaging* **19** (2001) 391.
- [4] D. Candela, N. Kalechofsky, *J. Low Temp. Phys.* **113** (1998) 351.
- [5] J. Choukeife, X. Maitre, P.J. Nacher, G. Tastevin, *accepted for publication in MAGMA*.