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Abstract

Fluctuations of the correlation dimension D2 describing multifractal properties of critical wavefunctions at the
two- and three-dimensional Anderson transition points are studied by employing the forced-oscillator method and
the box-counting procedure. We show that the width of the distribution function of D2 over disorder realizations
remains finite even in the thermodynamic limit. Similar results are obtained for the exponent α characterizing
quantum diffusion at criticality. These imply that exponents defined at the critical point may not be universal. It
is also shown that the scaling relation D2 = dα (d is the spatial dimension) does not hold for individual samples,
but is the case in a statistical sense.
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The Anderson metal-insulator transition is a quan-
tum phase transition at the absolute zero temperature.
Critical behaviors of this transition are characterized
by several critical exponents as in the case of thermal
critical phenomena. It is widely expected that these
exponents do not depend on microscopic details of sys-
tems. This remarkable feature provides the universal
nature of critical phenomena. The correlation dimen-
sion D2 describing multifractality of critical wavefunc-
tions at the Anderson transition point is believed to
be one of such exponents. The exponent D2 is, how-
ever, different from the localization-length exponent ν
or the conductivity exponent s in the following sense.
The exponent D2 is defined at the critical point, while
ν and s characterize the system near the critical point.
This is a quite important difference for the universality
of exponents.

The exponent D2 is defined by the correlation func-
tion of the critical wavefunction ψ(�) as

S(�1, �2) ≡
�|ψ(�1)|2 |ψ(�2)|2

�
sp

∝ |�1 − �2|−(d−D2) , (1)
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where d is the spatial dimension and 〈· · · 〉sp denotes the
spatial average. If the spatial average is equivalent to
the ensemble average 〈· · · 〉en over disorder realizations,
the exponent D2 can be also expressed by

P2(L) =

��
|ψL(�)|4 d�

�
en

∝ L−D2 , (2)

where P2 is the inverse participation ratio and ψL rep-
resents the critical wavefunction in a system of size L.
The correlation dimensionD2 obtained by Eq. (2) does
not fluctuate over samples, because P2(L) is a statis-
tical quantity of the disorder ensemble. The equiva-
lence between 〈· · · 〉sp and 〈· · · 〉en is, however, not ob-
vious because of the infinite correlation length at crit-
icality. There exists a possibility that D2 defined by
Eq. (1) fluctuates over samples even in the thermody-
namic limit, which means that D2 is not a universal
exponent. Similar arguments hold also for any expo-
nents defined at the critical point.

The aim of this paper is clarifying whether exponents
defined at the Anderson transition point depend on
disorder realizations. For this purpose, we calculate nu-
merically the correlation dimensionD2 of critical wave-
functions and the exponent α describing quantum dif-
fusion at criticality for the two- and three-dimensional
Anderson transitions.

Preprint submitted to LT23 Proceedings 13 June 2002



Two classes of systems are studied here. One is the
two-dimensional symplectic class (2DSC) in which a
system has the time-reversal symmetry and no spin-
rotational symmetry. Electrons in a system belonging
to this class are described by the tight-binding Hamil-
tonian with the critical disorder Wc = 5.86V , where
V is the hopping energy[1,2]. Another is the three-
dimensional orthogonal class (3DOC). A system be-
longing to this class has the time-reversal and spin-
rotational symmetries. The critical disorder Wc is cho-
sen to be 16.5V [3]. We have calculated critical wave-
functions for a number of disorder realizations by using
the forced-oscillator method (FOM)[4]. This method
enables us to calculate eigenvectors of large matrices
with saving computational resources. The correlation
dimensionD2 for individual critical wavefunction is ob-
tained by the box-counting method. In the case of the
2DSC, the system size ranges from 12 to 120, and the
number of disorder realizations is of the order of 103.
For the 3DOC, the system size varies from 8 to 30, and
the number of samples for each size is of the order of
104. We set the periodic boundary condition for both
systems. In quantum diffusion calculations, we use 100
samples of size L = 1, 001 for the 2DSC and 3, 600 sam-
ples of size L = 101 for the 3DOC. The Chebyshev ex-
pansion technique[5] is employed to compute the time
evolution of a wave packet.

Figure 1 shows the system size dependence of stan-
dard deviations σD2 of the distribution function of
D2. Since the correlation length diverges at the criti-
cal point, σD2 depends on L only via L/ξirr, where ξirr
is an irrelevant length. Assuming that the irrelevant
length ξirr is related to the irrelevant scaling field ζirr as
ξirr ∝ ζ

1/y
irr , the standard deviation σD2 can be written

as σD2 = f [(L/ξirr)
−y], where f is a scaling function

and y is a positive exponent. For L � ξirr, the scaling
function can be expanded as

σD2(L) = σ∗
D2 + AL−y . (3)

The vertical axis of Fig. 1 is σD2(L)−σ∗
D2

and the slope
of data represents the value of the exponent y. From our
results shown in Fig. 1, σ∗

D2 = 0.041 ± 0.017 and y =
0.48± 0.15 for the 2DSC and σ∗D2

= 0.142± 0.051 and
y = 0.43± 0.16 for the 3DOC. The quantity σ∗D2 is the
width of the distribution function of D2 in the limit of
L → ∞. The fact that σ∗

D2
is finite implies that values

of D2 fluctuate over disorder realizations even in the
thermodynamic limit. The inset of Fig. 1 shows similar
results for the exponent α. In this case, the scaling
should be considered for the diffusion time t instead of
the system size L. We obtain σ∗α = 0.045 ± 0.001 and
y = 0.44 ± 0.01 for the 2DSC and σ∗α = 0.085 ± 0.001
and y = 0.33± 0.01 for the 3DOC. From these results,
we suggest that any exponents defined at the Anderson
transition point have finite fluctuations.

It is known that D2 is related to α by the relation

Fig. 1. System size dependence of the standard deviation σD2
of the correlation dimension D2. The inset shows the diffusion

time dependence of the standard deviation σα of the exponent

α for quantum diffusion.

D2 = dα. (4)

If Eq. (4) holds for individual samples, we should have
σ∗

D2
= dσ∗

α. Values of standard deviations calculated
here do not satisfy this relation. In fact, plotting calcu-
lated D2 and α for each sample by a point in the D2-α
plane, data points scatter around the straight lineD2 =
dα. The typical values of the distribution functions of
D2 and α are, however, Dtyp

2 = 1.64 and αtyp = 0.83
for the 2DSC and Dtyp

2 = 1.36 and αtyp = 0.44 for the
3DOC, which satisfy Eq. (4). Here the typical value is
defined as the geometric mean of the distributing ex-
ponents. These results indicate that Eq. (4) holds in
a statistical sense, but not for individual realization of
disorder.
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