Non-universal exponents at the Anderson transition
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Abstract

Fluctuations of the correlation dimension D, describing multifractal properties of critical wavefunctions at the
two- and three-dimensional Anderson transition points are studied by employing the forced-oscillator method and
the box-counting procedure. We show that the width of the distribution function of I, over disorder realizations
remains finite even in the thermodynamic limit. Similar results are obtained for the exponent « characterizing
quantum diffusion at criticality. These imply that exponents defined at the critical point may not be universal. It
is also shown that the scaling relation D> = da (d is the spatial dimension) does not hold for individual samples,

but is the case in a statistical sense.
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The Anderson metal-insulator transition is a quan-
tum phase transition at the absolute zero temperature.
Critical behaviors of this transition are characterized
by several critical exponents as in the case of thermal
critical phenomena. It is widely expected that these
exponents do not depend on microscopic details of sys-
tems. This remarkable feature provides the universal
nature of critical phenomena. The correlation dimen-
sion D> describing multifractality of critical wavefunc-
tions at the Anderson transition point is believed to
be one of such exponents. The exponent s is, how-
ever, different from the localization-length exponent v
or the conductivity exponent s in the following sense.
The exponent D, is defined at the critical point, while
v and s characterize the system near the critical point.
This is a quite important difference for the universality
of exponents.

The exponent Ds is defined by the correlation func-
tion of the critical wavefunction (r) as

S(r1,m) = () [0 (r)?),,

o [y — g @7P (1)
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where d is the spatial dimension and (- - - )sp denotes the
spatial average. If the spatial average is equivalent to
the ensemble average (- - - Jen Over disorder realizations,
the exponent D can be also expressed by

= ([ |wL<r>|4dr>en L (2)

where P is the inverse participation ratio and vy, rep-
resents the critical wavefunction in a system of size L.
The correlation dimension Ds obtained by Eq. (2) does
not fluctuate over samples, because P (L) is a statis-
tical quantity of the disorder ensemble. The equiva-
lence between (- )sp and (- - )en is, however, not ob-
vious because of the infinite correlation length at crit-
icality. There exists a possibility that D2 defined by
Eq. (1) fluctuates over samples even in the thermody-
namic limit, which means that D> is not a universal
exponent. Similar arguments hold also for any expo-
nents defined at the critical point.

The aim of this paper is clarifying whether exponents
defined at the Anderson transition point depend on
disorder realizations. For this purpose, we calculate nu-
merically the correlation dimension D- of critical wave-
functions and the exponent « describing quantum dif-
fusion at criticality for the two- and three-dimensional
Anderson transitions.
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Two classes of systems are studied here. One is the
two-dimensional symplectic class (2DSC) in which a
system has the time-reversal symmetry and no spin-
rotational symmetry. Electrons in a system belonging
to this class are described by the tight-binding Hamil-
tonian with the critical disorder W, = 5.86V, where
V is the hopping energy[1,2]. Another is the three-
dimensional orthogonal class (3DOC). A system be-
longing to this class has the time-reversal and spin-
rotational symmetries. The critical disorder Wt is cho-
sen to be 16.5V[3]. We have calculated critical wave-
functions for a number of disorder realizations by using
the forced-oscillator method (FOM)[4]. This method
enables us to calculate eigenvectors of large matrices
with saving computational resources. The correlation
dimension D> for individual critical wavefunction is ob-
tained by the box-counting method. In the case of the
2DSC, the system size ranges from 12 to 120, and the
number of disorder realizations is of the order of 103.
For the 3DOC, the system size varies from 8 to 30, and
the number of samples for each size is of the order of
10*. We set the periodic boundary condition for both
systems. In quantum diffusion calculations, we use 100
samples of size L = 1,001 for the 2DSC and 3, 600 sam-
ples of size L = 101 for the 3DOC. The Chebyshev ex-
pansion technique[5] is employed to compute the time
evolution of a wave packet.

Figure 1 shows the system size dependence of stan-
dard deviations op, of the distribution function of
Ds. Since the correlation length diverges at the criti-
cal point, op, depends on L only via L/&., where Eirr
is an irrelevant length. Assuming that the irrelevant
length &;., is related to the irrelevant scaling field G+ as
Eir o (1Y, the standard deviation op, can be written
as op, = f[(L/&x) Y], where f is a scaling function
and y is a positive exponent. For L > &, the scaling
function can be expanded as

op,(L) =0p, + ALY . 3)

The vertical axis of Fig. 1is op, (L) — o, and the slope
of data represents the value of the exponent y. From our
results shown in Fig. 1, o, = 0.041 £ 0.017 and y =
0.48 £0.15 for the 2DSC and o}, = 0.14240.051 and
y = 0.43 £ 0.16 for the 3DOC. The quantity op, is the
width of the distribution function of D3 in the limit of
L — oo. The fact that o, is finite implies that values
of Dy fluctuate over disorder realizations even in the
thermodynamic limit. The inset of Fig. 1 shows similar
results for the exponent «. In this case, the scaling
should be considered for the diffusion time ¢ instead of
the system size L. We obtain o, = 0.045 £ 0.001 and

= 0.44 £ 0.01 for the 2DSC and ¢}, = 0.085 &+ 0.001
and y = 0.33 £ 0.01 for the 3DOC. From these results,
we suggest that any exponents defined at the Anderson
transition point have finite fluctuations.

It is known that D3 is related to « by the relation
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Fig. 1. System size dependence of the standard deviation op,
of the correlation dimension D>. The inset shows the diffusion
time dependence of the standard deviation o, of the exponent
« for quantum diffusion.

D> = da. (4)

If Eq. (4) holds for individual samples, we should have
op, = do;,. Values of standard deviations calculated
here do not satisfy this relation. In fact, plotting calcu-
lated D2 and « for each sample by a point in the Da-«
plane, data points scatter around the straight line Dy =
da. The typical values of the distribution functions of
D, and « are, however, D¥? = 1.64 and o'¥? = 0.83
for the 2DSC and DY® = 1.36 and a™P = 0.44 for the
3DOC, which satisfy Eq. (4). Here the typical value is
defined as the geometric mean of the distributing ex-
ponents. These results indicate that Eq. (4) holds in
a statistical sense, but not for individual realization of
disorder.
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