

Unambiguous relationship between the Hubbard, t-J and d-p models in One-dimension based on the Luttinger liquid Theory

Kazuhiro Sano^{a,1}, Yoshiaki ŌNO^b,

^a*Department of Physics Engineering, Mie University, Tsu, Mie 514-8507, Japan*

^b*Department of Physics, Nagoya University, Nagoya 464-8602, Japan*

Abstract

We examine the one-dimensional (1D) *d-p* model in comparison with typical 1D models such as the 1D Hubbard model and the 1D *t-J* model using the numerical diagonalization method combined with the Luttinger liquid theory. We calculate the spin velocity v_σ , the charge velocity v_ρ and the Luttinger liquid parameter K_ρ for each model. Using these parameters, a relationship between the models is obtained unambiguously. We find that the *d-p* model can be described by the Hubbard model in the wide parameter region, while it can be described by the *t-J* model only in the strong coupling limit.

Key words: Luttinger liquid; *d-p* model; Hubbard model; *t-J* model

Since the discovery of the high- T_c cuprates, strongly correlated electron systems have been extensively studied due to possible relevance to the mechanism of the superconductivity [1,2]. In particular, there has been much theoretical interest in the *d-p* model, the Hubbard model and the *t-J* model. The *d-p* model is widely accepted as a basic model describing the electronic structure of the Cu-O network, while the Hubbard and the *t-J* models are investigated as effective models for low-energy properties [1,2]. Various methods, such as perturbative approach [3] and cluster model calculation [4], have been used to clarify the relationship between these models. Nevertheless, there is no reliable relationship between the parameters of the effective (Hubbard or *t-J*) model and the original *d-p* model available for the whole parameter region.

In this work, we examine the *d-p* model, the Hubbard model and the *t-J* model in one-dimension (1D) by using the numerical diagonalization method combined with the Luttinger liquid theory [5–7]. Although our analysis is limited to 1D systems, it gives a quantitative and unique relationship between these models.

We consider the *d-p* model simulating a Cu-O chain:

$$H = t_{pd} \sum_{\langle ij \rangle, \sigma} (p_{i\sigma}^\dagger d_{j\sigma} + h.c.) + \epsilon_d \sum_{j, \sigma} d_{j\sigma}^\dagger d_{j\sigma} + \epsilon_p \sum_{i, \sigma} p_{i\sigma}^\dagger p_{i\sigma} + U_d \sum_j \hat{n}_{dj\uparrow} \hat{n}_{dj\downarrow}, \quad (1)$$

where $d_{j\sigma}^\dagger$ and $p_{i\sigma}^\dagger$ stand for creation operators of a hole with spin σ and $\hat{n}_{dj\sigma} = d_{j\sigma}^\dagger d_{j\sigma}$. Here, the charge-transfer energy Δ is defined as $\Delta = \epsilon_p - \epsilon_d$.

In the Luttinger liquid theory[9,10], low energy properties of 1D models in the Tomonaga-Luttinger regime can be generally described by an effective Hamiltonian:

$$H = \frac{v_\sigma}{2\pi} \int_0^L dx [K_\sigma (\partial_x \theta_\sigma)^2 + K_\sigma^{-1} (\partial_x \phi_\sigma)^2] + \frac{v_\rho}{2\pi} \int_0^L dx [K_\rho (\partial_x \theta_\rho)^2 + K_\rho^{-1} (\partial_x \phi_\rho)^2] \quad (2)$$

where v_σ , v_ρ , K_σ and K_ρ are the velocities and coupling parameters of spin and charge parts, respectively. The

¹ E-mail:sano@phen.mie-u.ac.jp

models considered in this paper are isotropic in spin space and, then, the coupling constant K_σ is renormalized to unity in the low energy limit.

When we scale the energy of every system by v_ρ , the system is identified by using two parameters: v_σ/v_ρ and K_ρ [8]. Then we can indicate every system as a point on the v_σ/v_ρ - K_ρ plane. When two different models are indicated by the same point on the v_σ/v_ρ - K_ρ plane, we recognize that the two models are equivalent in the low energy limit except for the energy unit.

In the weak-coupling regime, so-called *g*-ology [9] is useful to analyze the 1D models [8]. When we consider only the 'on'-site interaction such as U in the Hubbard model or U_d in the *d*-*p* model, the two parameters v_σ/v_ρ and K_ρ are written by only one *g*-coupling. Eliminating the *g*-coupling, we obtain $K_\rho = \sqrt{\frac{1+(v_\sigma/v_\rho)^2}{2}}$. It is noted that this result is independent of the band structure of the model. Therefore, the *d*-*p* model can be always mapped onto the Hubbard model for any Δ , U_d and any filling n in the weak-coupling limit.

In order to examine the 1D models including strong-coupling regime, we evaluate the two parameters v_σ/v_ρ and K_ρ by numerical diagonalization of finite size systems using the standard Lanczos algorithm. We use 7-unit cells system with 10 holes for the 1D *d*-*p* model, and 14-sites system with 8 electrons (6 holes) for the *t*-*J* model. Here, the hole density of the *t*-*J* model is corresponding to the part of the hole density over the half-filling of the *d*-*p* model [2]. In the inset of Fig.1, v_σ/v_ρ vs. K_ρ thus obtained is plotted for the *d*-*p* model and the *t*-*J* model together with the exact result for the Hubbard model from the Bethe-ansatz method [12]. It is found that the parameter point of the *d*-*p* model is close to that of the Hubbard model in the wide parameter region, while it dose not correspond to the *t*-*J* model except for the strong coupling region.

Comparing the parameter points of the *d*-*p* and the Hubbard models, we can estimate the effective interaction U_{eff} for the *d*-*p* model. The value of U_{eff} is defined by the on-site interaction U of the Hubbard model when the Hubbard model is indicated by the same point of the *d*-*p* model on the v_σ/v_ρ - K_ρ plane (see the inset). In Fig.1, U_{eff} thus obtained is plotted as a function of U_d for $\Delta = 2$ together with the result from the *g*-ology. Within the *g*-ology [7,9,11], U_{eff} is given by $U_{\text{eff}} = U_d |\alpha_{k_F}|^4 v_F^{\text{Hub}} / v_F^{\text{dp}}$, where $|\alpha_{k_F}|^2 = \frac{1}{2}(1 + \Delta / \sqrt{\Delta^2 + 4t_{k_F}^2})$ with $t_{k_F} = 2t_{pd} \cos(\frac{k_F}{2})$; v_F^{Hub} and v_F^{dp} are Fermi velocities of the Hubbard model and the *d*-*p* model, respectively. As seen in Fig.1, the result from the numerical method agrees with that from the *g*-ology in the weak coupling limit. Remarkably, in the strong coupling region, U_{eff} is fairly renormalized and becomes relatively weak.

In summary, we study the relationship between the *d*-*p* model, the *t*-*J* model and the Hubbard model in

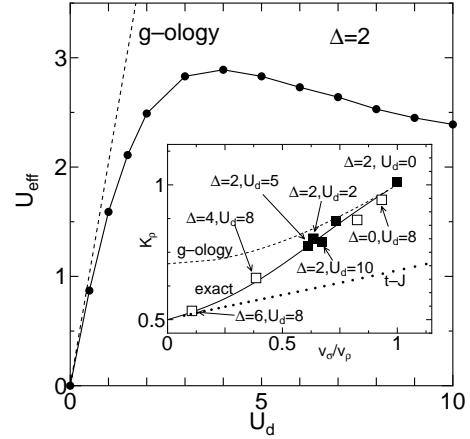


Fig. 1. The effective interaction U_{eff} as a function of U_d from the numerical method (closed circles) and from the *g*-ology (broken line). Inset shows v_σ/v_ρ vs. K_ρ for the *d*-*p* model at $U_d=0,1,2,5,10$ with $\Delta = 2$ (closed squares) and at $\Delta=0,1,2,4,6$ with $U_d = 8$ (open squares). The result for the *t*-*J* model (dotted line) [8] and the exact result for the Hubbard model (solid line) as well as the result from the *g*-ology (broken line) are also plotted in the inset.

one-dimension using the numerical diagonalization method combined with the Luttinger liquid theory. Analysis for the two parameters v_σ/v_ρ and K_ρ shows that the *d*-*p* model can be mapped onto the Hubbard model in the wide parameter region, while it can be described by the *t*-*J* model only in the strong coupling limit.

References

- [1] P.W. Anderson, Science **235** (1987) 1196.
- [2] F. C. Zhang, T. M. Rice, Phys. Rev. **B37** (1988) 3759.
- [3] H. Matsukawa, H. Fukuyama, J. Phys. Soc. Jpn. **58** (1989) 2845.
- [4] H. Eskes, G. A. Sawatzky, L. F. Feiner, Physica C **160** (1989) 424.
- [5] M. Ogata, M. U. Luchini, S. Sorella, F. F. Assaad, Phys. Rev. Lett. **66** (1991) 2388.
- [6] K. Sano, Y. Ōno, J. Phys. Soc. Jpn. **63** (1994) 1250; J. Phys. Chem. Solids. **62** (2001) 281.
- [7] K. Sano, Y. Ōno, Physica **C205** (1993) 170; Phys. Rev. **B51** (1995) 1175; Physica **C242** (1995) 113; J. Phys. Soc. Jpn. **67** (1998) 389, *ibid.* **67** (1998) 4151.
- [8] K. Sano, Y. Ōno, J. Phys. Soc. Jpn. **71** (2002) Suppl. 353.
- [9] J. Solyom, Adv. Phys. **28** (1979) 209.
- [10] F. D. M. Haldane, Phys. Rev. Lett. **45** (1980) 1358; J. Phys. **C14** (1981) 2585.
- [11] T. Matsunami, M. Kimura, Prog. Theor. Phys. **91** (1994) 453.
- [12] E. H. Lieb, F. Y. Wu, Phys. Rev. Lett. **20** (1968) 1445.