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Abstract

We apply the real-space renormalization group (RG) approach to investigate the energy level statistics at the
integer quantum Hall (QH) transition. Within the RG approach the macroscopic array of saddle points of the
Chalker-Coddington network is replaced by a fragment consisting of only five saddle points. Previously we have
demonstrated that the RG approach reproduces the distribution of the conductance at the transition, P(G), with
very high accuracy. To assess the level statistics we analyze the phases of the transmission coefficients of the saddle
points. We find that, at the transition, the nearest neighbor energy level spacing distribution (LSD) exhibits well-
pronounced level repulsion. We emphasize that a metal-like LSD emerges when the fixed point distribution P. of G is
used. Studying the change of the LSD around the QH transition we observe scaling behavior. Using a one-parameter
finite-size scaling analysis we are able to extract a critical exponent v = 2.38 + 0.04 of the localization length.
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1. Introduction

At the QH delocalization-localization transition, the
localization length & of the electron wavefunction di-
verges like € ¥, where € defines the energy distance to
the transition and v a critical exponent. The wavefunc-
tions of the charge carriers change from being local-
ized in the insulating to being extended in the metallic
regime. The energy level spacing distribution (LSD)
P(s) describes the probability to find neighboring en-
ergy levels at an energy distance s. Since the local-
ized wavefunctions are uncorrelated in space the corre-
sponding LSD coincides with the Poisson distribution.
On the metallic side spatial correlation leads to level
repulsion for small s. The shape of P(s) in the metallic
regime is predicted by random matrix theory [1] and
depends on the universality class the system belongs to.
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For our study, due to the broken time-reversal symme-
try in a magnetic field, it is the Gaussian Unitary En-
semble (GUE). Exactly at the QH transition a third so
called critical LSD Pe(s) is found [2]. The discussion of
the shape of P.(s) concentrates on the behavior in the
tails. For small s it is commonly excepted that Pe(s) re-
sembles the level repulsion found in the corresponding
metallic regime. For s > 1 two contradicting behaviors
have been predicted: (i) P.(s) x exp(—bs) [3] and (ii)
Pe(s) o< exp(—as?) [4], with v = 1 + (vd) ™" and the
spatial dimension d. Besides the shape of P(s), a finite-
size scaling (FSS) approach using the LSD around the
transition furthermore allows to evaluate v [5], which
is predicted to be a universal quantity.

In order to access the LSD at the QH transition
we use a real-space RG approach to the Chalker-
Coddington (CC) model [6] which has proven success-
ful particular in the studies of the critical conductance
distribution, the value of v and the influence of long-
range-correlated disorder [7].
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Fig. 1. Results for the RG of the LSD. P(s) is rescaled by
the mean level spacing A. The thick line shows F;(s). The
other curves corresponds to the first 9 RG iterations with an
initial distribution Ry shifted to the metallic (z9 = +0.1) or
the localized (z9 = —0.1) regime. Within the RG procedure
the LSD moves away from P.(s) as indicated by the arrows.
At s/A = 1.4 the curves cross at the same point.

2. RG of the LSD

The CC model [6] describes a single QH transition
using a chiral network consisting of electron trajecto-
ries along equipotential lines (links) and saddle points
(SP’s) of the potential (nodes). Each SP relates the
wavefunction amplitudes in two incoming and two
outgoing channels. The links correspond to a random
phase ®. From 5 such SP’s we construct an RG unit,
which describes the essential properties of the entire
network [7,8]. Following from the size of the RG unit
the effective system size of our sample is doubled in
each RG step, which allows to reach very large sys-
tems. Starting from a initial distribution Py(t) of the
transmission coefficient t of a SP we can now compute
P1(t) of the RG unit and then continue iteratively
[7]. We note that P(G) of the dimensionless conduc-
tance G is related to P(t) by G = t*. The LSD P,(s)
of RG step n is derived from a unitary network op-
erator of the RG unit [9] which depends on B,_1(t)
and P,—_1(s). In order to obtain the eigenenergies we
assume a linear energy dependence of the ®’s.

Using an initial Py(¢) corresponding to the critical
distribution P.(G), we find [10] that P,(s) converges
to the fixed point distribution FP(s) within a few RG
iterations. The shape of the bulk P.(s), as shown in
Fig. 1, does not agree very well with previous numer-
ical studies. Nevertheless we can verify that the be-
havior for the small s tail resembles the predicted s
dependence. For s > 1 reasonable agreement of our
data with the proposed shapes could be obtained for
P.(s) x exp(—as”) with v = 2.4.

The behavior of the LSD around the QH transition
can be studied in terms of the scaling approach. For a
second order phase transition & (20) o |z0 — zc| " for

zo approaching the critical point z.. The parameter zo
is a shift of SP energies inducing an initial shift of Pe(s)
toward the localized (zo < 0) or the extended (20 > 0)
regime, respectively. Two results of the RG iterations
for zo = —0.1,40.1 are shown in Fig. 1. The shape of
the LSD allows to derive scaling quantities. In this work
we choose ap = foso P(s)ds and a1 = % foso I(s)ds [5],
where I(s) = [ P(s')ds’. The integration limit so =
1.4 marks a crossing point of all LSD curves, as can be
seen in Fig. 1. We then compute v by an FSS approach
to ap and o using a higher order nonlinear fit [11]. As
result we obtain v = 2.38 +0.04 in excellent agreement
with previous numerical works [7,12].

3. Conclusion

Instead of alarge CC network we use a small 5 SP RG
unit to extract the eigenenergies. This approach uses
a specific assumption of the energy dependence of the
phases in the RG unit, which influences also the shape
of the LSD. Therefore the overall form of the computed
P(s) is not universal. But it still shows the predicted
quadratic level repulsion for small s. The presence of
universality is moreover verified by an FSS analysis of
the LSD around the QH transition, where the exponent
v = 2.38 +0.04 of the localization length is obtained.

We argue that our findings indicate a large robust-
ness of universal properties at the QH transition. Using
a simple noninteracting semiclassical picture of elec-
tron propagation and the approximation of the RG ap-
proach we were able to reveal universal behavior.
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