

Unconventional electronic transition in Na_xCoO_2 with a precisely controlled Na nonstoichiometry

T. Motohashi ^{a,1}, R. Ueda ^a E. Naujalis ^a T. Tojo ^a I. Terasaki ^b T. Atake ^a, M. Karppinen ^a
H. Yamauchi ^a

^a Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

^b Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

Abstract

An unconventional electronic transition was discovered in a layered cobalt oxide, Na_xCoO_2 , with precisely controlled Na contents. Only for Na-rich samples with $x \simeq 0.75$, a weak-ferromagnetic transition of the second order was clearly detected at 22 K, being accompanied by a clear specific-heat jump, unexpectedly small spontaneous magnetization, kinks in both the resistivity vs temperature and the thermoelectric power vs temperature curves. Moreover, large positive magnetoresistance was observed at temperatures below ~ 22 K.

Key words: Na_xCoO_2 ; electronic transition; weak-ferromagnetic transition; positive magnetoresistance

Unconventional electromagnetic characteristics have been reported for various strongly-correlated transition-metal oxides. In many of such cases, spin-charge-orbital interactions are in a subtle balance such that very different electronic states may be stabilized depending on thermodynamic conditions. Consequently, a large response is often induced against a tiny stimulation such as charge carrier doping. Thus chances are that highly precise control on chemical composition in correlated-electron-system materials yields unknown electronic/magnetic phase transitions.

Here we report a novel electronic phase transition in layered cobalt oxide, Na_xCoO_2 , with precisely controlled Na content. Only for samples with the solubility-limit Na content, i.e. $x = 0.75$, a weak-ferromagnetic transition of the second order was clearly detected at $T_C = 22$ K, being accompanied by a clear specific-heat jump, unexpectedly small spontaneous magnetization, kinks in both the resistivity (ρ) and thermoelectric-power (S) vs temperature curves. At the same time, large positive magnetoresistance was observed at temperatures exactly below T_C .

Na_xCoO_2 samples were synthesized employing a “rapid heat-up” technique [1] to precisely control the Na content at $x = 0.75$. By x-ray powder diffraction, the pellet samples were confirmed to be single phase of hexagonal $\gamma\text{-Na}_x\text{CoO}_2$ [2]. The microstructure of the Na_xCoO_2 samples was examined using a TEM (Hitachi H-9000NAR) with an acceleration voltage of 300 kV. Magnetization and magnetotransport measurements were performed using a SQUID magnetometer (Quantum Design; MPMS-XL) and a four-point-probe apparatus (Quantum Design; PPMS), respectively. Specific heat was measured using a home-made adiabatic calorimeter. Detailed descriptions of the experimental procedure are given elsewhere [3].

ED patterns were obtained from a large number of grains of an $\text{Na}_{0.75}\text{CoO}_2$ sample: for most grains ($> 90\%$), a triangular diffraction pattern that is characteristic to the CoO_2 layer of Na_xCoO_2 was clearly observed (Fig. 1, inset). In some rare cases we could not observe clear diffraction patterns. The reason for this was considered to be a misalignment of the incident electron beam. This clearly indicates that the presently prepared sample is single phase without any traces of impurity phases. We successfully took atomic-

¹ E-mail:t-mot@rlem.titech.ac.jp

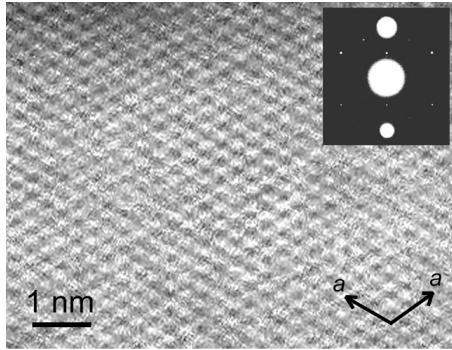


Fig. 1. High-resolution TEM image of $\text{Na}_{0.75}\text{CoO}_2$ sample. The observed triangular atomic arrangement is characteristic to the CoO_2 layer of Na_xCoO_2 . The inset shows the ED pattern taken with an incident beam parallel to the c -axis.

resolution images where we can observe the triangular atomic arrangement (Fig. 1). From the TEM observations, the present samples were confirmed to be homogeneous, not containing any anomalous nano-scale clusterings.

Figure 2 shows the dependences on temperature of specific heat (C_p), magnetic susceptibility (χ), electrical resistivity (ρ), thermoelectric power (S), and MR effect ($\Delta\rho_H/\rho_0 \equiv (\rho_H - \rho_0)/\rho_0$) of the $\text{Na}_{0.75}\text{CoO}_2$ sample. A second-order transition was clearly detected at $T_C = 22$ K, being accompanied by a clear specific-heat jump. Below T_C , the magnetic susceptibility rapidly increases under an applied field of 1 to 100 Oe, exhibiting a weak ferromagnetism with a small but finite spontaneous magnetization ($1.2 \times 10^{-4} \mu_B$ / Co site at 2 K) [3]. Both resistivity and thermoelectric power gradually decrease in the lower temperature region, yielding a kink at T_C in the $\rho - T$ and $S - T$ curves, respectively. Moreover, the degree of MR at 7 T abruptly increases with decreasing temperature and reaches up to ~ 0.3 at 2 K. As clearly shown in Fig. 2, all of the anomalies occur at the exactly same temperature, i.e. T_C .

It should be noted that the weak-ferromagnetic transition of $\text{Na}_{0.75}\text{CoO}_2$ involves with various anomalies as shown in Fig. 2, indicating a peculiar magnetic property as compared to, e.g. that of ZrZn_2 [4]. The large simultaneous responses in resistivity, thermoelectric power, and MR effect would suggest a significant modification in the Fermi-surface structure. The unconventional electronic transition at $T_C = 22$ K may be attributed to the strongly-correlated $3d$ electrons.

In summary, we have discovered an unconventional electronic phase transition at $T_C = 22$ K in Na_xCoO_2 with a precisely controlled Na content (x) of 0.75. The transition was of the second order, being accompanied with a clear specific-heat jump, a small spontaneous magnetization, a kink in both the $\rho - T$ and $S - T$ curves, and relatively large positive magnetoresistance

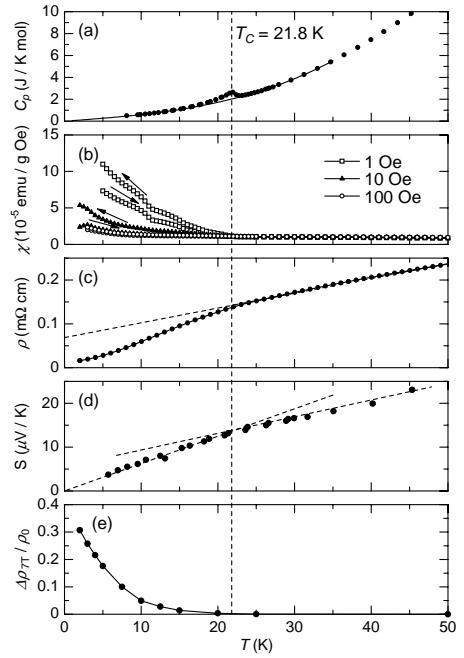


Fig. 2. (a) Specific heat, C_p , (b) magnetic susceptibility, χ , (c) electrical resistivity, ρ , (d) thermoelectric power, S , and (e) degree of MR at a field of 7 T, $\Delta\rho_H/\rho_0 \equiv (\rho_H - \rho_0)/\rho_0$, for the $\text{Na}_{0.75}\text{CoO}_2$ sample with respect to temperature.

effect. All these characteristics strongly indicate the occurrence of an unusual electronic state stemmed from the strong correlation of electrons.

Acknowledgements

We are indebted to Dr. Chikyo for his support of TEM observations. The present work was supported by Grants-in-aid for Scientific Research (Contract No. 11305002 and 14038219) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] T. Motohashi *et al.*, *Appl. Phys. Lett.* **79** (2001) 1480.
- [2] C. Fouassier *et al.*, *J. Solid State Chem.* **6** (1973) 532.
- [3] T. Motohashi *et al.*, submitted.
- [4] S. Ogawa, *Physica* **91B** (1977) 82.