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Abstract

The condensation energy of a spatially inhomogeneous d-wave superconducting (SC) state coexisting with spin-
density wave (SDW) stripes is studied by using the Variational Monte Carlo (VMC) method. We calculate its
hole-density dependence in the two-dimensional (2D) Hubbard model. With U=8t, it turns out that the coexistent
state is the most stable state among other ordered states in the under-doped region. The obtained hole-density
dependence of the incommensurability of the coexisting state is in good agreement with the neutron scattering
data for La2−x−yNdySrxCuO4 in a wide region.
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The problem of the coexistence of superconductiv-
ity (SC) and SDW stripes has attracted great interest.
Recently, such a possibility has been experimentally
investigated at low temperatures in the under-doped
region of the high-Tc superconductors. In the elastic
and inelastic neutron scattering experiment with Nd
doped La2−xSrxCuO4 [1], the incommensurate mag-
netic scattering spots around (π, π) were observed in
the SC phase. It was shown that the incommensura-
bility is proportional to the hole doping x in the low-
doping region.

The SC coexisting with striped SDW structure has
been theoretically proposed recently [2,3]. We showed
that, in the under-doped region (0.0833 ≤ x ≤ 0.125),
the SC state can coexist in the vertical stripe state as
the ground state of the 2D Hubbard model by using
VMC method [3]. We also found that, with decreasing
hole doping rate, the decreasing tendency of the SC
condensation energy is in accord with that estimated
from the specific heat data [4] and the interval of stripes
increases in accord with the change of incommensura-
bility in the neutron scattering experiment. The same
result was obtained from the calculation by using the
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d-p model [5]. In this paper, we examine the coexis-
tent state in the 2D Hubbard model by using the VMC
method in a wider doping region.

We now consider the 2D Hubbard model on a square
lattice H = −∑

i,j,σ
tij(c

†
iσcjσ + h.c.) + U

∑
i
ni↑ni↓

where the transfer energy tij = t, t′, 0, if sites i and j are
nearest neighbor, next-nearest neighbor and otherwise,
respectively. In the following we take t as the unit of
energy. c†iσ (ciσ) is the creation (annihilation) operator
of the electron with spin σ (↑ or ↓) at site i (i = 1 ∼
Ns) and niσ = c†iσciσ. Ns is the number of sites, and
U is the on-site Coulomb energy.

By using the VMC method, we calculate the vari-
ational energy in the coexistent state Ecoexist =
〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. The trial wave functions is defined by
|Ψ〉 = PNePG|φMF

coexist〉 where PG is the Gutzwiller pro-
jection operator given by PG =

∏
i
(1 − (1 − g)n̂i↑n̂i↓)

with g being a variational parameter in the range from
0 to unity, which controls the on-site electron corre-
lation; PNe is a projection operator which extracts
only the part with a fixed total electron number Ne,
|φMF

coexist〉 is a mean-field wave function for the coexist-
ing superconductivity in a stripe state. The effective
mean-field Hamiltonian for the coexistent state is
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Fig. 1. The optimezed total energy per site as a function of

hole density for t′ = −0.20 and U = 8. Filled squares, open

up-triangles, filled circles and open square denote the energy of

coexistent state for 12-, 10-, 8- and 6-lattice period stripes with

the SC state, respectively. Open and closed diamonds denote

the normal state and commensurate SDW state, respectively.

The error bars are smaller than the size of symbols.

represented by

HMF =
∑

ij

(
c†i↑ ci↓

)(Hij↑ Fij

F ∗
ji −Hji↓

)(
cj↑

c†j↓

)
, (1)

where the diagonal terms describe the stripe state with
Hijσ = −tij − µ + U

2

[
ni + sgn(σ)(−1)xi+yimi

]
δi,j

where µ is the chemical potential. The vertical
stripe state is denoted by the charge density ni

and the spin density mi spatially modulated as
ni = 1 − ∑

l
α/ cosh ((yi − Yl)/ξc) and mi =

m
∏

l
tanh ((yi − Yl)/ξs) where Yl denotes the position

of a vertical stripe [6]. Amplitude α is fixed by
∑

i
ni =

Ne. On the other hand, the off-diagonal terms in eq.
(1) define the d-wave SC state with Fij =

∑
ê
∆ijδj,i+ê

where ê = ±x̂ or ±ŷ is a unit vector; we treat the
spatially inhomogeneous SC state [2,3] in which the
SC amplitude takes the maximum on the stripes and
the sign of the parameter ∆ij changes between the
nearest stripes, i.e. ∆i,i+x̂ = ∆ cos (qy(yi − Y )) and
∆i,i+ŷ = −∆cos (qy (yi − Y + ŷ/2)); here qy = 2πδ
and δ is a incommensurability given by the stripe’s
periodicity in the y direction with regard to the spin.
Note the periodicity in charge distribution is half of
the spin periodicity. In actual calculations, variational
parameters are µ, m, g, ξc, ξs and ∆. In this paper, we
choose the system parameters t′ = −0.20 and U = 8
suitable for cuprate superconductors. The Periodic
boundary condition is used in the x-direction, and the
anti-periodic one in the y-direction.

In Fig. 1, we show the Ecoexist per site as a function
of hole density p. We evaluate the optimized energy of
6-, 8-, 10- and 12-lattice-period stripe on the 16 × 12,
12 × 8, 12 × 10 and 12 × 12 lattices, respectively. As a
reference, we show the energies of the normal state and

the commensurate SDW state without considering the
SC ordering in Fig. 1. We find that the periodicity δ of
the minimum energy state switches as a function p, be-
ing approximately proportional to the doping rate in
1/12 ≤ p ≤ 1/8, while the total energy of the 8-lattice
period stripe’s case (which hardly changes even in the
case of 12 × 16 lattices) is more stable than that of
the 6-lattice period stripe’s case for p = 1/6. This re-
sult is in good agreement with the neutron scattering
data [1] where the incommensurability is proportional
to the Sr concentration x in the range of 0.07 < x <
0.125 and saturates at δ ∼ 0.125 beyond x ∼ 0.12. We
find also that the crossing point of the normal state’s
line and the 8-lattice period stripe state’s line by lin-
ear fitting is p ∼ 0.22. The hole density of the point
decreases for smaller U with the stripe’s condensation
energy decreasing, which was confirmed in the case of
U = 7 and t′ = −0.20. This value is close to an in-
triguing critical point near x ∼ 0.19 suggested from the
specific heat and NMR experiment in the SC phase [4].
In this calculation, however, the size effect cannot be
disregarded. The calculation of the size dependence is
now in progress.

In conclusion, we have studied the coexistent state
of the SC and stripes as the ground state of the 2D
Hubbard model in a wide parameter range. The SC
phase at very low temperatures of the under-doped re-
gion is understandable by the picture of the coexistent
state of the inhomogeneous d-wave superconductivity
and vertical stripes. The homogeneous d-wave SC state
without coexisting with stripe structure is indicated to
be realized in the overdoped region [7].
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