

Pyroelectric Properties of Sol-Gel Derived Lithium Tantalite Thin Films

Y. C. Chen ^{a,1}, M. C. Kao ^a, H. Z. Chen ^b, C. M. Wang ^c

^aDepartment of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

^bDepartment of Electrical Engineering, Hsiuping Institute of Technology, Taichung 412, Taiwan.

^cDepartment of Electrical Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833, Taiwan.

Abstract

Lithium tantalite (LiTaO_3) thin films ($\sim 0.5\mu\text{m}$) have been successfully deposited on $\text{Pt}(111)/\text{SiO}_2/\text{Si}(100)$ substrates by means of sol-gel spin-coating technology. Figures of merit for infrared detector were studied for the LiTaO_3 thin films. There exists high figures of merit F_v of $2.1 \times 10^{-10} \text{ C}\cdot\text{cm}/\text{J}$ and F_m of $2.4 \times 10^{-8} \text{ C}\cdot\text{cm}/\text{J}$ because of the relative low dielectric constant (ϵ_r) of 35 and high pyroelectric coefficient (γ) of $4.0 \times 10^{-8} \text{ C}/\text{cm}^2\cdot\text{K}$ of the films. The pyroelectric infrared detector fabricated by the LiTaO_3 thin film exhibits a voltage responsivity R_v of 4584 V/W at 20 Hz and a high specific detectivity D^* of $4.23 \times 10^7 \text{ cm}\cdot\text{Hz}^{1/2}/\text{W}$ at 100 Hz.

Key words: LiTaO_3 ; sol-gel; thin film; voltage responsivity; specific detectivity

In recent years, pyroelectric detectors have been widely used for infrared (IR) detection applications owing to the advantages of wavelength-independent sensitivity and room temperature operation. There are commonly used materials for pyroelectric applications including triglycene sulphate (TGS), lithium tantalite (LiTaO_3), $\text{Ba}_{1-x}\text{Sr}_x\text{TiO}_3$ (BST), PZT and PbTiO_3 [1]. In which, LiTaO_3 is a suitable material with high figures of merit for pyroelectric detector application. In this study, it is focused on the optical response of the LiTaO_3 thin film IR detectors fabricated by a sol-gel method with the 1, 3-propanediol solvent. The 1, 3-propanediol can be capable of intermolecular association reactions, and is of low toxicity and air stable. The study of the dynamic response of diol-based sol-gel derived LiTaO_3 thin films presented in this work is original and has never been published elsewhere.

The sol-gel process is used to prepare the precursor solutions of LiTaO_3 with general chemical formula.

Lithium 2,4-pentanedionate, $\text{LiC}_5\text{H}_7\text{O}_2$ and tantalum isopropoxide, $\text{Ta}[\text{OCH}(\text{CH}_3)_2]_5$ were used as precursors and 1,3-propanediol, $\text{HO}(\text{CH}_3)_2\text{OH}$ was used as solvent. The details of the diol-based sol-gel technique and the synthesis process of LiTaO_3 film have been reported previously [2]. The films were deposited on $\text{Pt}(111)/\text{SiO}_2/\text{Si}(100)$ substrates by repeated spin-coating at a spin rate of 3000 rpm for 30 s. After each coating step, the films were given a pyrolysis heat treatment at 400 °C for 30 min to remove residual organics. Finally, films with five-layers were fabricated, then heated in air at 700 °C for 1 h.

To measure the optical responses of the LiTaO_3 thin film detectors, a light source from a blackbody furnace with a temperature of 1000 K was focused, using a concave lens, and mechanically chopped at frequencies from 5 Hz to 1 kHz. The pyroelectric voltage and current signals were measured using a lock-in amplifier (Model EG&G-7260) and monitored by a digitizing oscilloscope (Model HP-54502A), while the detector was exposed to the incident chopped-IR radiation. These measurements were performed at room temperature, in a shielded room.

¹ Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. E-mail: ycc@ee.nsysu.edu.tw

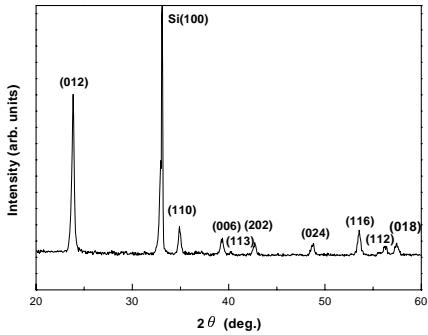


Fig. 1. XRD pattern of LiTaO₃ film heated at 700 °C for 1 h.

Figure 1 shows the XRD pattern of LiTaO₃ thin film heated at 700 °C for 1 h. It is obvious that the polycrystalline lithium tantalite can be obtained. The ratio of the standard XRD intensities of LiTaO₃ powder, $I(hkl)$, from the JCPDS file is: $I(012) : I(110) : I(006) : I(202) : I(116) : I(018) = 100 : 25 : 4 : 16 : 20 : 6$. In this study, we can find that the diffraction intensities of these planes are quite similar to those of the standard powder sample.

The pyroelectric coefficient γ of the LiTaO₃ thin film heated at 700 °C for 1 h can be measured by ramping the temperature of the material at a rate of 3 °C/min. The maximum value of γ , the pyroelectric coefficient, was calculated to be about 4.0×10^{-8} C/cm²·K at 62 °C. The average figures of merit, $F_v = \gamma/C_V \cdot \epsilon_r$ for the voltage responsivity, R_v , and $F_m = \gamma/C_V (\epsilon_r \cdot \tan \delta)^{1/2}$ for the specific detectivity, D^* , of the LiTaO₃ thin films were estimated to be 2.1×10^{-10} C·cm/J and 2.4×10^{-8} C·cm/J, respectively [2]. These values are much larger than those of PZT [$F_v = 0.5 \times 10^{-10}$ C·cm/J and $F_m = 1.6 \times 10^{-8}$ C·cm/J] [3].

The optical response of LiTaO₃ thin film IR detector is expressed in terms of voltage responsivity (R_v) given by [4]:

$$R_v = \frac{\eta \gamma A R \omega}{\sqrt{1 + \omega^2 \tau_t^2} \sqrt{1 + \omega^2 \tau_e^2}}, \quad (1)$$

where ω is the angular modulation frequency, τ_t the thermal time constant ($= H/G$, where H and G are the thermal capacity and the thermal conductance, respectively.), and τ_e ($= RC$) is the electrical time constant. The specific detectivity ($D^* = R_v (\Delta f A)^{1/2} V_n$) gives the area-normalized signal to noise ratio in the frequency bandwidth Δf for the detector. Figure 2 shows the modulation frequency dependence of R_v , D^* and voltage noise V_n for LiTaO₃ thin film IR detector.

The R_v value decreases at high frequencies because R_v is inversely proportional to the frequency at a modulation frequency $> \tau_t^{-1}$. The present results are consistent with the above phenomenon described by equation (1). The detector has a maximum voltage repon-

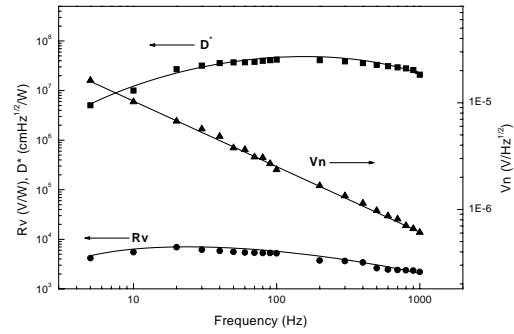


Fig. 2. The modulation frequency dependence of R_v , D^* and voltage noise V_n for LiTaO₃ thin film IR detector.

sivity R_v of 4584 V/W at 20 Hz. Figure 2 also shows that V_n varied nearly proportionately to $f^{-1/2}$, possibly because Johnson noise dominated in pyroelectric detectors [5]. D^* was proportional to $f^{-1/2}$ for $f > 100$ Hz, because R_v varied proportionately to f^{-1} and V_n varied with $f^{-1/2}$. In contrast, D^* decreased as f decreased for $f < 50$ Hz. This phenomenon probably occurred because R_v was almost saturated, and V_n increased nearly proportionately to $f^{-1/2}$. A maximum D^* of 4.23×10^7 cm·Hz^{1/2}/W at 100 Hz has been obtained.

In summary, the high quality pyroelectric LiTaO₃ thin films have been fabricated on Pt(111)/SiO₂/Si(100) substrates by a diol-based sol-gel technology, and the optical response of the LiTaO₃ thin film detector were also investigated. The corresponding results of dynamic response show that the obtained LiTaO₃ thin film exhibited excellent pyroelectric properties and, thus, was suitable for application as highly sensitive pyroelectric IR devices.

Acknowledgements

This study was partly supported by the National Science Council, R.O.C., under contract no. NSC 90-2216-E-110-025.

References

- [1] S. D. Cheng, Y. Zhou, C. H. Kam, X. Q. Han, W. X. Que, Y. L. Lam, Y. C. Chan, J. T. Oh, W. S. Gan, Mater. Lett. **44** (2000) 125.
- [2] M. C. Kao, M. S. Lee, C. M. Wang, H. Z. Chen, Y. C. Chen, Jpn. J. Appl. Phys. **41** (2002) 2982.
- [3] R. Watton, Ferroelectrics **91** (1987) 87.
- [4] R. W. Whatmore, Rep. Prog. Phys. **49** (1986) 1335.
- [5] M. Kohli, Y. Huang, T. Maeder, C. Wuethrich, A. Bell, P. Muralt, N. Setter, P. Ryser, M. Forster, Microelectron. Eng. **29** (1995) 93.