A theory of metallic conductivity of the two dimensional electron gas.
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Abstract

It is well known that electron-electron interaction in two dimensional disordered systems leads to logarithmically
divergent Altshuler-Aronov corrections to conductivity at low temperatures ( T7 < 1; 7 is the elastic mean-free
time). This work is devoted to the fate of such corrections at intermediate temperatures 7' > 1. We show that in
this (ballistic) regime the temperature dependence of conductivity is still governed by the same physical processes as
the Altshuler-Aronov corrections - electron scattering by Friedel oscillations. However, in this regime the correction
is linear in temperature; the value and even the sign of the slope depends on the strength of electron-electron
interaction (this sign change may be relevant for the “metal-insulator” transition observed recently).
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Recent observations [1] interpreted as a metal-
insulator transition in 2D electron systems challenged
theoretical understanding of transport phenomena in
disordered systems at low temperatures. Although
the theory of quantum corrections due to Altshuler
and Aronov [2] and further developed by Finkelstein
[3] allows for the such sign change in the tempera-
ture dependence of the conductivity in 2D due to
electron-electron interaction in the triplet channel, the
prediction for the Hall coefficient [4] disagrees strongly
with experiment. At the same time, the theory of
temperature-dependent screening, first suggested by
Stern [5] to describe data at higher temperatures, pre-
dicts the universal, metallic sign of the temperature
dependence of conductivity. We address these contra-
dictions by developing a unified picture of quantum
interference effects in 2D electron gas, valid for all tem-
peratures smaller than the Fermi energy. We show that
the interaction corrections to conductivity arise due to
coherent scattering of electrons off Friedel oscillations.

Consider an idealised problem of 2D electrons in-
teracting via Coulomb interaction in the presence of
point-like impurities, when the dimensionless conduc-
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tance of the system is large g > 1. Although such a
model does not take into account material-dependent
details, such as valley degeneracy (relevant for experi-
ments in Si-MOSFETS) or spin-orbit coupling (which
is important in SiGe samples), it captures the essential
interference phenomena that lead to temperature and
magnetic field dependence of the transport coefficients.

In an interacting electron system one finds an in-
teraction driven (i.e. absent in a free gas) interference
effect, namely coherent electron scattering off Friedel
oscillations. In the ballistic regime (7’7 > 1) one needs
to consider only a single impurity. The impurity po-
tential induces a modulation of electron density close
to the impurity. The oscillating part of the modulation
is known as the Friedel oscillation. The leading correc-
tion to conductivity is a result of interference between
two semi-classical paths: (i) an electron scatters off the
Friedel oscillation created by the impurity; (ii) it scat-
ters off the impurity itself. Interference is most impor-
tant for scattering angles close to 7w (or for backscat-
tering), since the extra phase factor accumulated by
the electron on path (i) is canceled by the phase of the
Friedel oscillation so that the amplitudes correspond-
ing to the two paths are coherent. As a result, the prob-
ability of backscattering is greater than the classical
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expectation (taken into account in the Drude conduc-
tivity). At lower temperatures, one needs to consider
multiple impurity scattering. In that case the Friedel
oscillation is created by all impurities involved in the
process. It is clear that such effect contributes to the
scattering amplitude at any angle, which is typical of
the diffusive motion of electrons. At the lowest tem-
peratures scattering off Friedel oscillations leads to the
logarithmic temperature dependence of the conductiv-
ity [2]. We note that interference persists to large dis-
tances, limited only by temperature R ~ 1/|k — kp| <
v /T. Thus there is a possibility for the resulting con-
ductivity correction to have a non-trivial temperature
dependence. The sign of the correction depends on the
sign of the coupling constant that describes electron-
electron interaction. For the above simplest model that
is the Fermi liquid constant F§, which describes the
“triplet” channel interaction.

The above physical picture yields the following re-
sults (details of calculations can be found in Ref. [6]).
In the absence of the magnetic field the total correc-
tion to the conductivity can be written as a sum of the
“charge” and triplet contributions
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where the charge channel correction is given by
e’ Tr 3 e? Er
==Ll 2fTn)| - In =% 2
b0C=hh [ 5/ T)} 22k T @

and the triplet channel correction is
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Here the factor of 3 in the triplet channel correction
Eq. (3) is due to the fact that all three components of
the triplet state contribute equally. The dimensionless
functions f(z) and ¢(z) describe the cross-over between
ballistic and diffusive regimes and can be disregarded
for the qualitative discussion.

The temperature dependence of the Hall coefficient
can be approximated by the following expression
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where Ing(z) = (4/11)[-5f3(z) — 12f2(z) — 3f1(z) +
4fo(z)], with f;(z) = (In[l + =] + 22:1(—x)"/n)/xj.
In the ballistic limit the correction decays with temper-
ature 0pzy o< 1/T7 which might explain the unusual
results of recent experiments [1].

In parallel magnetic field electrons acquire addi-
tional Zeeman energy E. = gupH, which is pro-
portional to the magnitude H of the field, the Bohr
magneton g, and the electron g-factor. Consider for
simplicity the ballistic regime. If E, > T > 77! then
the two components of the triplet channel are frozen
by the magnetic field. This results in the change in the
slope of the temperature dependence as well as in the
magneto-conductivity
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where g(z) = 5=In(1 + z) + 2(1J1r22) + z;rllig;;). At
the strongest fields E; > EFr when the system is fully
polarized the spin does not play a role any more and
one retrieves the universal singlet channel result
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This result is in agreement with recently reported mea-
surements in GaAs heterostructures [7].

In conclusion, for interacting disordered 2D electron
systems we find temperature and magnetic field depen-
dence of transport coefficients. All independently ob-
servable quantities are obtained in terms of the same
set of parameters, allowing us to predict results of fu-
ture measurements and gain insight into the micro-
scopic structure of the interacting electron system.
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