Spin-wave Hamiltonian in double-exchange systems
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Abstract

A simple derivation of the effective spin-wave Hamiltonian for a double-exchange system with infinitely large
Hund’s-rule coupling is demonstrated. The formalism can be applied to models with arbitrary range of hopping as
well as those with randomness. The result shows that, within the leading order of the 1/S expansion, one magnon
excitation spectrum can be described by the Heisenberg model.

Key words: double exchange; spin-wave; colossal magnetoresistance

Double-Exchange (DE) model [1,2] has been in-
troduced to study the metallic ferromagnetism in
perovskite manganese oxides. One-magnon excitation
spectrum has been investigated using the spin-wave
approximation [3-5]. Recently, spin excitation spec-
trum of the DE systems with randomness has been
studied using the Green’s-function formalism [6].

In this paper, we demonstrate a simple derivation
of the effective spin-wave Hamiltonian for the DE sys-
tems, which can be applied to generic cases with arbi-
trary hopping range or with randomness. Within the
leading order of the 1/S expansion, the results are
equivalent to those by the Green’s function formalism.
The advantage of this derivation is that it provides an
intuitive understanding of the ferromagnetic exchange
coupling mediated by the DE interactions, compared
to the Green’s-function formalism.

We begin with the DE model in the limit of large
Hund’s-rule coupling with localized spins being treated
as classical spins. For the moment, we consider a sys-
tem without randomness. In this limit, local spin quan-
tization axes for conduction electrons are taken paral-
lel to the localized spin in each site, and electrons with
antiparallel spin states to localized spins are projected
out. Then, the transfer integral between sites i and j

! Corresponding author. E-mail: furukawa@phys.aoyama.ac.jp

Preprint submitted to LT23 Proceedings

depends on the relative angle of localized spins at cor-
responding sites S; and S; as [2]
ti;(S:,85) =

0; 0; L0 . 0 s,
ti;° {cosécosé—l—smésmée (¢4 ¢J)}. (1)

Here 6 and ¢ are defined by the direction of the local-
ized spin S as

Sy = S'sinf; cos ¢,

SY = Ssinb; sin ¢, (2)
S? =S cosb;,

while ¢;;° = ¢;;° is the transfer integral between sites i

and j in the absence of the DE interaction. The Hamil-
tonian is given by

H= —Z [tij(si,Sj)CICj —I—tji(Sj,Si)C}Ci] . 3)
ij
Note that we explicitly treat the complex transfer in-
tegral in this formalism.
The absolute value of the transfer integral is rewrit-
ten as

[ti;(Si,S5)| 1
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On the other hand, the imaginary part becomes as

ti;0 2\ (S+57)(S+ 57) 52 ‘

Note that Imt;; is antisymmetric with respect to the
exchange of ¢ and j, as expected from t;; = t;;

Now, we apply the spin-wave approximation to
this Hamiltonian. We consider the spin-wave exci-
tation from the perfectly-polarized ferromagnetic
ground state where the spins align along the z direc-
tion. Namely, we replace the spin variables S; by the
Holstein-Primakoff transformation

2o /2 (0t 4 a
Si\/;(ai‘i'az)v
S
st=iy/3 (6l -, ®

87 =8 —alai,

and take account of the expansion by 1/S up to the
leading order O(1/S). By substituting Eqs. (6) into
Eq. (4), we obtain

[tis] 1

t t t
1,0 —1—|—E(ai(lj—l—ajou—ai(JLz aa])+0(52)()

In the same manner, we obtain the imaginary part as

t..oj = 45 (aTa] a; al) +O(52) (8)
ij

Since the imaginary part is O(1/5), if we denote t;; =
[ti;| exp (i®i;), we obtain

’J—1+1<1>1]+O(52)

-+ 0(53)- )

Therefore, we obtain the magnon-electron Hamiltonian
in the spin-wave approximation up to O(1/5) as

Zt” [1 + —(a}a]- —I—(L;ai —ala; - a;-a]-)}

X (ci cj + c;-ci)

1
—I—E Z ti;° (a}aj — a;-ai) (c}c]- — c;-ci) . (10)
ij

To obtain the effective Hamiltonian for magnons, we
trace out the fermion degrees of freedom in Eq. (10).
Up to O(1/S), the result is given by replacing terms
clej by (cle;). Here, the expectation value should be
taken for the ferromagnetic ground state without any
magnon, whose Hamiltonian is described by

— Ztijo (CIC]' —|— C;Ci) . (11)
ij

In the perfectly-polarized ground state without degen-
eracies, the relation (cl¢;) = (c ci) generally holds
since the expectation value is real Then, the second
term in Eq. (10) vanishes and we finally obtain the ef-
fective spin-wave Hamiltonian as

1
Heg = 39 E tij0<czc]'>
¥}
1

X (a}a]- —I—(L;ai—aiai—a;a]-), (12)
up to irrelevant constants. In the uniform system with
nearest neighbor hoppings where (cl¢;) is constant,
this Hamiltonian gives a cosine-like dispersion as pre-
viously obtained by the different method [3].

Let us discuss the relation with the Heisenberg
model. Comparing with the spin-wave approximation
(6) of the Heisenberg model Hueis = —2 Y, Ji;S: - Sy,
we see that the magnon Hamiltonian (12) can be
reproduced by the Heisenberg model with exchange
couplings

0

tij
452

Jij = 755 (cle), (13)
within the leading order of 1/S expansion. Since
t:;°(clc;) describes the local kinetic energy, Eq. (13)
gives the relation between the DE ferromagnetic in-
teraction and the kinetics of conduction electrons.

Finally, we note that Eq. (13) has been derived for
generic electronic hoppings t;;°, which includes the
cases with arbitrary hopping range or with random
hopping integrals. Let us consider the case with site-
diagonal random potential for conduction electrons.
Since this type of potential does not couple to the
spin-wave operators within the leading terms of 1/5,
the spin-wave Hamiltonian can be similarly obtained.
Namely, the Hamiltonian (11) should be replaced by
that with random potential, and expectation values
(clej) should be taken by the ground state of the
replaced Hamiltonian. We also see that J;; # 0 for
Anderson-localized insulating systems where (c:-rc]-> #*
0. Namely, DE ferromagnetism can also exist in such
non-metallic systems.

References

[1] C. Zener, Phys. Rev. 82 (1951) 403.

[2] P. W. Anderson and H. Hasegawa, Phys. Rev. 100 (1955)
675.

3] N. Furukawa, J. Phys. Soc. Jpn. 65 (1996) 1174.

4] D.I. Golosov, Phys. Rev. Lett. 84 (2000) 3974.

5] N. Shannon, J. Phys. CM13 (2001) 6371.

(3]
(4]
(5]
[6] Y. Motome and N. Furukawa, J. Phys. Soc. Jpn. 71 (2002)
1419.



