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Abstract

We describe the essence of quantum effects inside s-wave and chiral p-wave vortices, without explicit use of
quasiclassical Green function formalism. Physical quantities such as the impurity scattering rate and nuclear spin
relaxation rate contain the coherence factor of the Andreev bound states in the matrix element of the transitions.
The coherence factor of the Andreev bound state is different from that of a quasiparticle in bulk superconductors.
Consequently, the physics within vortex core is different from that in normal state or that in spatially uniform
superconducting state.
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Vortex cores are often regarded as locally realized
normal regions surrounded by a bulk superconduct-
ing state. This picture is valid in dirty superconduc-
tors where the mean free path l is much shorter than
the coherence length ξ0 at zero temperature. In clean
superconductors where l � ξ0 is satisfied, however,
this “normal core ” picture is no longer valid. Here
we present the results on impurity scattering rates in
2D s-wave and chiral p-wave[1,2] vortices, in which
quantum effects intrinsic to vortex cores become man-
ifest[3,4]. We also discuss briefly the nuclear relaxation
rate within vortex core[5,6]. While earlier studies[4]
have been presented in the Green function formalism,
the style of presentation in this paper adheres to that
in [7] in spirit, in order to make the physics more ac-
cessible.

For simplicity, we consider superconductors with
isotropic Fermi surface and axisymmetric vortex under
the pair-potential with stepwise profile:

∆(�, α) =

{
∆0e

iNα (x + iy) /r, for ξ0 < r

0, for 0 < r < ξ0

(1)
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where α is the angle with respect to x-axis in 2D mo-
mentum space and N denotes chirality[4]; N is zero for
s-wave and ±1 for chiral p-wave.

When the condition kFξ0 � 1 is satisfied, then the
motions of quasiparticles are described by wave-packet.
We first consider the pure case and then take into ac-
count the effect of impurities. In the core, a quasipar-
ticle moves back and forth on a line ( trajectory ) with
direction α (Fig. 1(a)) changing particle-hole channel
on the Andreev reflection at the wall of pair-potential.
Constructive interference of multiple Andreev reflec-
tions yields an Andreev bound state. This situation
is similar to the S-N-S junction[8]. Using this simi-
larity, the energy of the Andreev bound state on a
trajectory with impact parameter b with respect to
vortex center is given by E(b) ∼ ∆0b/ξ0. This re-
sult is followed by the local density of states (DOS);
N(ε, �)/N0 = ξ0/

√
r2 − b2

ε for r > bε ≡ εξ0/∆0 and
zero otherwise. Here N0 is DOS in normal state. Now
we introduce the coordinate s along a trajectory � =
s(cos α, sinα)+ b(− sin α,cos α). The wave function of
the Andreev bound state is then given by

(
uα(s)

vα(s)

)
= eikFs

(
ei(1+N)α/2

−ie−i(1+N)α/2

)
.
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From these results, we can obtain the scattering rate
due to randomly distributed impurities. The scattering
rate Γ(ε) of quasiparticle forming a bound state with
energy ε and momentum direction α is given by[4]

Γ(ε)

Γn
∼

ξ0∫
−ξ0

ds

ξ0

N(ε,�)

N0
|uαu∗

α′ − vαv∗
α′ |2 (2)

within Born approximation. Γn is the normal state
scattering rate and α′ is the momentum direction of
the out-going state. In the integral, � runs along a tra-
jectory of the in-going state with fixed value of bε. The
coherence factor in (2)

|uαu∗
α′ − vαv∗

α′ |2 /4 = sin2
[
(1 + N)

(
α − α′) /2

]
(3)

depends on the scattering angle α′ − α and N . From
the geometrical relation shown in Fig. 1(b), this ma-
trix element (3) is given by s/

√
s2 + b2

ε for N = 0,
2sbε/(s2+b2

ε) for N = 1 and zero for N = −1. Combin-
ing these results with N(ε,�)/N0 ∼ ξ0/|s|, we obtain

Γ/Γn ∼




ln (∆0/ε) , for N = 0 (s-wave)

O(1), for N = 1 (chiral p-wave)

0, for N = −1 (chiral p-wave).

(4)

While the local DOS in the core are common in the
three cases N = 0,±1, the scattering rates (4) are qual-
itatively different. We can see, from this result, that
the coherence effect plays an important role in the scat-
tering process within vortex cores. The scattering rate
for N = −1, in particular, vanishes owing to the de-
structive coherence effect, although there are available
out-going states within vortex cores.

Similarly, the nuclear spin relaxation rate[5,6] is also
subject to the coherence effect. For chiral p-wave case
(N = ±1), the nuclear spin relaxation rate at � near
and off the vortex center is given by

1/T1(�) =
π

8

∞∫
0

dεN2(ε,�) |uαu∗
α′ − vαv∗

α′ |2
cosh2(ε/2T )

(5)

with the same coherence factor as that in (3) (We note
that Eq. (5) is not valid for N = 0). 1/T1 vanishes for
N = −1, even in the presence of quasiparticles with
finite local DOS.

Vanishing impurity scattering rate and nuclear spin
relaxation rate for chiral p-wave vortex with N = −1
are the most conspicuous quantum effects in vortex
cores. Obviously, both rates are finite in the bulk chiral
p-wave superconductors. These results explicitly show
that a vortex core has intrinsic quantum phenomena,
which are absent in normal cores or bulk superconduc-
tors.
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Fig. 1. (a) Schematics of the Andreev bound states formed

by particle (represented by solid line with an arrow) and hole

(dashed line) with momentum direction α in the vortex core

with a stepwise radial profile (Eq. (1)). b denotes the impact

parameter of the trajectory with respect to vortex center. (b)

Geometrical relation in the scattering event at r from the

in-going state α to the out-going state α′. s is the coordinate

along the trajectory.
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