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Abstract

The role of the magnetic field on the d-wave density wave as a model of pseudogap state of cuprates and on the
d-wave superconducting state will be addresses. We argue that in d-wave density state magnetic field can produce
secondary gap components. This distortion by magnetic field offers a possibility to distinguish between different
scenarios of pseudogap in normal state of high-Tc materials. Similarly we argue that magnetic field can distort the
p-wave state and produce secondary component of the gap in p-wave superconductor.
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1. Introduction

We will argue that the ground state of a many body
system can be distorted and a secondary component of
the order parameter can be generated upon applying
magnetic field. This distortion, if it produces a new
nontrivial component of the order parameter, leads to
the symmetry lowering of the state.

We start with the general symmetry arguments on
why magnetic field can lower the symmetry of the state.
Consider a general many body ground state |Ψ0〉. Now
consider this state in the external magnetic field B||z,
where we take field to be along z-axis.Here we will focus
on the orbital effect of magnetic field. The relevant
interaction term in the Hamiltonian of the system is:

Hint = M̂zB (1)

where orbital magnetic moment operator M̂z = gµB L̂z

with g– being the gyromagnetic ratio and µB is the
Bohr magneton. The first order perturbation theory
gives for the correction to the ground state:

|Ψ1〉 = Hint|Ψ0〉 (2)

There are three possibilities for |Ψ1〉: i) |Ψ1〉 is zero.
In this case there is no linear effect of the field on the
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ground state. Symmetry of the state is not lowered.
This is the case, as can be verified directly, when we
apply magnetic field to s-wave superconductor. The
angular momentum operator applied to ground state
yields zero; ii) |Ψ1〉 is collinear with |Ψ0〉. The effect of
the field to this order is only to change the amplitude
of the state, e.g. the magnitude of the order parameter.
Again symmetry is not lowered in this case; iii) case
when 〈Ψ1|Ψ0〉 = 0. In this case the newly acquired am-
plitude |Ψ1〉 is of different symmetry, the ground state
is distorted by magnetic field |Ψ0〉 → |Ψ0〉 + |Ψ1〉 and
symmetry of the ground state is lowered in the mag-
netic field. It is not surprising that magnetic field can
produce a new component of the order parameter. For
example d-wave state is time reversal invariant. In the
magnetic field, since time reversal is explicitly broken,
the state becomes a dx2−y2 + idxy with finite angular
momentum.

Below we will focus on the only nontrivial case iii).
We will specifically consider the case of d-wave density
wave as a model for a pseudogap state of cuprates.
We also mention the case of unconventional p-wave
superconductors.
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2. Pseudogap state and magnetic field
induction of secondary component

The nature of the competing orders in high-Tc phase
diagram and the pseudogap phase of underdoped
cuprates is an important issue that is one of the most
strongly debated questions. Some models attribute
PG to superconducting phase fluctuations above Tc

[1–3]; or to a competing non-superconducting order
parameter [4,5].

We propose here to use magnetic field as a test of
the symmetry of pseudogap state. If indeed the normal
state of cuprates is a D wave density wave (DDW), as
proposed in [5], it will have a nontrivial response to
magnetic field. We argue that, in addition to the dom-
inant dx2−y2 (d) component of the DDW order param-
eter, a subdominant dxy (d′) component can be gener-
ated by the magnetic field. The fully gapped particle
spectrum and the magnetically active collective mode
of the condensate are the experimentally relevant con-
sequences of d + id′ density wave state. Detailed dis-
cussion for DDW case is also given in [6]. Similar phe-
nomenon of field induction of secondary component for
d-wave superconductor was also considered, e.g. in [7].
The physical origin of this instability is the bulk or-
bital magnetic moment 〈Mz〉 in the d+ id′ state. When
an external magnetic field H is applied perpendicular
to the plane of the two-dimensional (2D) system under
consideration (namely, H ‖ ẑ), the resulting coupling
of the magnetic induction B with the orbital magnetic
moment, −〈Mz〉B, lowers the system free energy. For
the DDW state, as opposed to superconducting case,
there is no screening effect on the magnetic field, the
magnetic induction B is homogeneous throughout the
system and is close to the external magnetic field H.
In the absence of the magnetic field, the pure d-density
wave state can be regarded as the equal admixture of
the orbital angular moment Lz = ±2 pairs:

W0(Θ) = iW0 cos(2Θ) =
iW0

2
[exp(2iΘ) + exp(−2iΘ)] .(3)

Here we have made an approximation to the order
parameter W0(k) ∝ 〈c†k+Q,σck,σ〉 ∝ W0(cos kxa −
cos kya) by confining the wave vector k near the Fermi
surface and introduced Θ as the 2D azimuthal angle
of the Fermi momentum, where ck,σ annihilates an
electron of spin σ at k, W0 is the magnitude of the
pure d-wave component. In the presence of an external
magnetic field, the Lz = ±2 orbital wave functions
becomes unequal and the coefficients for them are
shifted linearly with the magnetic field H:

W0(Θ) → iW0

2
[(1 + ηB) exp(2iΘ) + (1 − ηB) exp(−2iΘ)]

= i[W0(Θ) + iBW1(Θ)] , (4)

where B = H and W1 ≈ η sin(2Θ). Notice that the
pure d-density wave order parameter is imaginary while
the field generated d′-wave component is real, the rel-
ative phase between the two components is still π/2 in
the equilibrium. Microscopically, by focusing on the ef-
fect of magnetic field on the order parameter, the sys-
tem Hamiltonian can be written as:

H =
∑

k,σ

ξkc†k,σck,σ +
∑

k,σ

[Wkc†k,σck+Q,σ + H.c.]

−igµBB
∑

k,σ

c†k,σ[sin ka × ∂ka]zck,σ . (5)

Here ξk = −2[cos kxa + cos kya] − µ with µ the chem-
ical potential is the single particle energy measured
relative to the Fermi energy. The DDW order param-
eter is given by Wk = iW0ϕ0(k) + W1ϕ1(k), where
ϕ0(k) = cos kxa− cos kya and ϕ1(k) = sin kxa sin kya.
The amplitude of the d- and d′-wave components W0,1

are determined self-consistently:

W0 =
iV0

2N

∑

k

〈c†k+Q,σck,σ〉ϕ0(k) , (6)

and

W1 = −2V1

N

∑

k

〈c†k+Q,σck,σ〉ϕ1(k) , (7)

where V0,1 are, respectively, the d- and d′-channel
interaction, N is the number of 2D lattice sites. d-
wave component is imaginary due to the equivalence
of Q = (π, π) and −Q, enforced by the underly-
ing band structure. The notation [sinka × ∂ka]z
represents sin(kxa)∂ky a − sin(kya)∂kxa. We define
εk = −2[cos kxa + cos kya] so that ξk = εk − µ. For
Q = (π, π), we have following symmetry properties:
εk+Q = −εk, ϕ0(k + Q) = −ϕ0(k), and ϕ1(k + Q) =
ϕ1(k). In view of the fact that the DDW state breaks
the translational symmetry with lattice constant but
conserves that by

√
2a along the diagonals of the

square lattice, it is convenient to halve the Brillouin
zone, by introducing two kinds of electron operators
ck,σ and ck+Q,σ. The pairing of the particles and holes
must cause correlations in their relative motions. Ac-
cording to the structure of the Hamitonian and the
self-consistency conditions for the DDW order param-
eter, we can introduce the following Green’s functions
to describe the correlation:

G11(k,k′; τ) = −〈Tτ [ck,σ(τ)c†k′,σ(0)]〉 , (8)

G12(k,k′; τ) = −〈Tτ [ck+Q,σ(τ)c†k′,σ(0)]〉 , (9)

G21(k,k′; τ) = −〈Tτ [ck,σ(τ)c†k′+Q,σ(0)]〉 , (10)

G22(k,k′; τ) = −〈Tτ [ck+Q,σ(τ)c†
k′+Q,σ

(0)]〉 , (11)
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where the factor Tτ is a τ -ordering operator as usual,
ck,σ(τ) = eHτck,σe−Hτ is the operator in the Heisen-
berg representation. Given the Hamiltonian Eq. (5), by
solving the equation of motion in the approximation up
to the first order in the orbital-magnetic field coupling,
we obtain the Fourier transform: G21(k,k′; iωn) =
G0

21(k, k′; iωn) + δG21(k,k′; iωn), where

G0
21(k, k′; iωn) =

(Wk + W ∗
k+Q)δkk′

D(k; iωn)
, (12)

and

δG21(k,k′; iωn) =
−igµBB(iωn − ξk+Q)

D(k; iωn)

×[sinka × ∂ka]G0
21(k, k′; iωn) . (13)

where D(k; iωn) = (iωn − Ek,1)(iωn − Ek,2) with
Ek,1(2) = ±√

ε2
k + |Wk + W ∗

k+Q|2 − µ. We take the
ansatz that V0 is bigger than V1 [8] such that in the ab-
sence of the magnetic field, the d-wave ordering is pure
and no secondary phase transition for the appearance
of the d′ ordering occurs. Therefore, the DDW gap
appearing in the G0 is, Wk = iW0ϕ0(k). As a result,
we find:

W1 = −4V1

N

∑

k∈rbz

Re[δG21(k,k; τ = 0)]ϕ2(k)

= ηBW0 , (14)

where

η = −16gµBV1kBT

N

∑

k∈rbz

∑

ωn

εkϕ2
1(k)

D2(k; iωn)

≈ 16gµBN(0)V1

EF
, (15)

where N(0) is the density of states at the Fermi energy
EF . By taking the Fermi wave length of a few lattice
constant a (∼ 4Å) and N(0)|V1| ∼ 0.3, it is estimated
|W1/W0| ≈ 10−2 at B = 10T, which makes the ampli-
tude of the induced component |W1| to be on the order
of a few Kelvin.

Equation (14) suggests that the phenomenolog-
ical Ginzburg-Landau (GL) free energy functional
must contain the linear coupling between the orig-
inal d-density wave order parameter and the field-
induced d′-density wave order parameter, fint =
i η
2 (iW0)W

∗
1 B + c.c.. Consequenetly, we can write

down the system GL functional of the form:

F =

∫
d2r[

α0

2
(T − T0

c )|W0(r)|2 +
β0

4
|W0(r)|4

+
K0

2
|∇(iW0(r))|2 +

K1

2
|∇W1(r)|2 +

α1

2
|W1(r)|2

+fint(r)] , (16)

where the first two terms describe the instability of the
pure d-density wave state, with T0

c being the transi-
tion temperature in the absence of magnetic field. The
last two terms represent the energy shift of the d-wave
state as a result of the field-induced d′-wave order pa-
rameter, where α1 is positive. Notice that, unlike the
superconducting order parameter, the gradient oper-
ator on the DDW order parameter is not shifted by
the vector potential because the DDW pairs do not
carry charge. It follows from Eq. (16) that, as far as
the d′-wave component is concerned, the coupling to
the magnetic field term [i.e., fint] is linear, while the
stiffness term [i.e., the second last term in Eq. (16)] is
quadratic. Therefore, at least at the weak field so that
W1 is small, the linear term is dominant. Therefore,
the system gains energy by having a nonzero equilib-
rium value of W1. By treating W1 and W∗

1 as indepen-
dent variables, the GL functional F is minimized by
enforcing δF

δW1
= δF

δW∗
1

= 0, which leads to

W1 =
ηB

α1
W0 . (17)

Upon substituting the above result into Eq. (16),
we find the energy gained by the system with
the induced d′-density wave component: δF =
−

∫
d2rη2|W0|2B2/2α1. Therefore, the transition tem-

perature which is now field dependent, and is renor-
malized by the magnetic field as: Tc(B) = T 0

c +δTc(B),
where δTc(B) = η2B2/2α0α1. It then follows that
coupling of the magnetic field with the orbital angular
momentum shifts the instability of the d-density wave
ordering to the high temperature at higher fields. Here
we note that, since the particle-hole pairing takes
place with the equal spin, the coupling between the
magnetic field and the electron spin (i.e., the spin
Zeeman coupling) will not depress the induction of
d′ component in the DDW metal. We do not address
here the case of strong field.

Up to now our analysis of the induction of the sec-
ondary d′ component has been focused on the equilib-
rium solution. If we assume that this secondary d′ or-
der parameter has been created, we can write in gen-
eral iW0 = |W0|eiφ0 and W1 = |W1|eiφ1 , and study
the dynamics of the relative phase φ = φ1 − φ0, which
is governed by [9]:

∂2φ

∂t2
= −ρ−1 δF

δφ
, (18)

where ρ−1 ≈ N(0). With Eq. (16), we find

∂2φ

∂t2
= −ρ−1ηB|W0||W1| cosφ − s2∇2φ , (19)

which leads to the clapping mode with dispersion
ω2(B, k) = ω2

0(B) + s2k2 with ω2
0(B) = ηB2|W0|2/ρ
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and s2 = |W0|2(K0 + η2B2K1)/4ρ. Alternative ap-
proach to the clapping mode in d+id’ state is pre-
sented in [10]. This mode represents the oscillation of
the relative phase between the d and d′ components
of the DDW order parameter, and is tunable by the
magnetic field.

We thus have argued that (a) the applied magnetic
field can generate the dxy order parameter in the d-
density wave metal, whose amplitude is linearly pro-
portional to the field strength, (b) the transition into
the d + id′-density wave state occurs at a higher tran-
sition temperature, and (c) there exists a new clapping
mode corresponding to the oscillation of the relative
phase between the two components.

3. p + ip’ superconductor

Here we consider the case of quasi 2-dimensional p-
wave superconductor in an external field. We identify
here |Ψ0〉 ∝ px and |Ψ1〉 ∝ py . Assume that the zero
field state has real order parameter that transforms
as |Ψ0〉 ∝ px. We argue then that external magnetic
field will induce secondary component |Ψ1〉 = ipy . The
state |Ψ0〉 + |Ψ1〉 will have a finite magnetic moment
< Mz > that can couple to magnetic field. The free
energy term driving the secondary component is again
given by Eq.(16) and we find |Ψ1〉 ∝ B|Ψ0〉 in case
of p-wave superconductor. Here we do not address the
spin part of the order parameter that can also couple to
magnetic field. The results for the clapping mode are
similar to the case of d-wave superconductor. We note
that the similar clapping mode for the p-wave state
that violates time reversal in zero field, e.g. px + ipy ,
was considered in [11].
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