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Abstract

We examine the thermodynamics of a two–dimensional Fermi gas model describing adsorbed3He in a thin superfluid
4He film. We show that the magnetic steps seen in experiment are a simple manifestation of the T = 0K equation
of state and that the thermal stability of the steps is determined by the larger of ∆ε/2, one–half of the level spacing,
and µmH0, the magnetic energy. We derive the conditions under which there exist points in the phase space (termed
invariant points) through which all low-temperature isotherms pass exponentially close. The calculated invariant
points for the magnetic susceptibility versus coverage are in good agreement with experiment. We calculate the
magnetic susceptibility and show that it should exhibit a step-like structure versus 3He coverage similar to that of
the magnetization.
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1. Introduction

In 1989 Higley, Sprague and Hallock [1,2] discovered
steps in the magnetic equation of state (magnetization
isotherms versus coverage) for thin 3He –4He mixture
films. The steps are direct evidence of the existence of a
set of discrete, transverse 3He states due to the exter-
nal substrate. These states were first predicted and ex-
amined by Gasparini and co-workers [3] in a pioneering
series of heat capacity experiments. In both the Hallock
and Gasparini experiments, the solid substrate was Nu-
clepore, a polycarbonate material threaded by roughly
cylindrical passages of nominal diameter 2000 Å.

We consider a system of N 3He atoms in an area
A. The spin- 1

2 atoms have magnetic moment µm and
are subject to an applied magnetic field H0. The spin
state will be labeled by the index s = ± where we can
arbitrarily choose s = + to represent the low energy
configuration. The 3He atoms are adsorbed onto a film
of 4He which is itself adsorbed onto a solid substrate.
All information in the 3He system concerning the 4He
film and the substrate is contained in a set of transverse
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single–particle states whose energy levels are denoted
{ε0α}. In the numerical work to be described below, we
shall use H0= 2 T. The magnetic energy, 2µmH0, is
approximately 30 mK. Our model has two transverse
states with energies {ε00 = 0, ε0

1 = 1.8 K} and an effec-
tive mass, m∗ = 1.38m3. These values were chosen to
agree with the NMR experiments of Ref. [2].

2. Thermodynamics

For fermions in two-dimensions, the density and
magnetization for particles in level {α, s} at tempera-
ture T , β = 1/kBT , are given by:

n = (1/2w�)
∑

α,s

ln(1 + Λα,s), (1)

where w� = βεF�, and

m = (1/2x)
∑

α

ln

(
1 + Λα+

1 + Λα−

)
, (2)

where x = βµmH0 and Λα,s = exp[β(µ−ε0
α+µmH0s)].

The bars denote dimensionless quantities. Densities are
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Fig. 1. Magnetization, m , as a function of coverage, n , for

temperatures = 0 K, 40 mK, 100 mK, 250 mK.

measured in units of one complete 3He monolayer, n� =
0.0647 Å−2. Magnetizations are measured in units of
M0 = m∗µ2

mH0A/πh̄2, the value of the magnetization
at the first step.

In Figure 1, we show the magnetic equation of state
(isotherms of magnetization versus coverage). The evo-
lution of the step structure out of the zero tempera-
ture results is clear. The temperatures chosen for the
isotherms match those in Ref [2].

In the low temperature limit, with ∆ε � µmH0, we
find for the slope at m = 1,

(dm/dn)m=1 ≈ (1/n0L) exp[−w/2 + x], (3)

where w = β∆ε, n0L = µmH0/εF� and εF� =
h̄2πn�/m∗ is the Fermi energy of a completed mono-
layer. Thus, the larger of µmH0 or ∆ε/2 determines
the region of temperature stability for the step. In the
case of Fig. 1, ∆ε/2 = 0.9 K and µmH0 = 16 mK.

The points in the thermodynamic phase space that
all isotherms seem to pass through will be called invari-
ant points. On Fig. 1, there are two non–trivial points
located at (n,m) = (nonset/2, 1), (nonset, 4/3). [We
note nonset = ∆ε/εF� = 0.761.] It is straightforward
to show that all isotherms pass exponentially close to
these points at low enough temperature. For example,
for the invariant point at m = 1, we find

n ≈ (1/2) nonset + O(e−w/2). (4)

Thus for temperature less than ∆ε/2 all magnetization
isotherms come exponentially close to this invariant
point. These results are in qualitative agreement with
experiment. [2]

We also consider the magnetic susceptibility, χ, at
fixed system size. In the limit, H0 → 0, we obtain:

(χ/χ0)H0=0 =
∑

α

(Λα/(1 + Λα)) , (5)

where Λα = exp β(µ − ε0α) and χ0 = M0/H0 is the
Pauli susceptibility. In Fig 2 we show the magnetic

Fig. 2. Magnetic susceptibility in units of the Pauli susceptibil-

ity as a function of 3He coverage at temperatures 40, 100, and

250 mK. At T = 0 K the susceptibility would be horizontal

steps at χ/χ0 = 1, 2 with a vertical ramp at n = 0.77.

susceptibility at temperatures 0, 40, 100 and 250 mK.
This figure shows clearly that the magnetic suscepti-
bility exhibits steps at integer values similar to the
magnetization steps of Fig. 1. Neither existing suscep-
tibility measurements nor first principles calculations
have gone to high enough coverage to see the predicted
steps. [1]

The magnetic susceptibility versus coverage has two
non-trivial invariant points that can be analyzed ex-
actly as the invariant points in Fig. 1.

3. Conclusion

In this paper, we examined the step structure and in-
variant points in the magnetization and magnetic sus-
ceptibility for 3He in thin 3He –4He superfluid films.

See Ref. [4] for a detailed description of the ground–
state and also a discussion of the behavior of the pres-
sure, the chemical potential, the heat capacities at fixed
area and pressure, the thermal expansion coefficient
and the isothermal compressibility.

References

[1] R. B. Hallock, in Progress in Low Temperature Physics

(Elsevier North Holland, Amsterdam, 1995), Vol. XIV, p.

321.

[2] R. H. Higley, D. T. Sprague, R. B. Hallock, Phys. Rev.

Lett. 63 (1989) 2570.

[3] F. M. Gasparini, B. Bhattacharyya, M. J. DiPirro, Phys.

Rev. B 29 (1984) 4921; B. K. Bhattacharyya, M. J. DePirro,

F. M. Gasparini, Phys. Rev. B 30 (1984) 5029.

[4] R. H. Anderson and M. D. Miller, preprint.

2


