

Heavy-ion Irradiation dependence of the Superconducting properties of (Cu,C)Ba₂Ca₃Cu₄O_{10.5-δ}

Hijiri Kitô^{a,1}, Akira Iyo^a, A.Crisan^b, Manabu Hirai^c, Madoka Tokumoto^a, Satoru Okayasu^d, Masahito Sasase^d, Hideo Ihara^a, Yasumoto Tanaka^a

^a A.I.S.T, Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 Japan and CREST/JST, 4-1-8, Honcho, Kawaguchi, 332-0012 Japan

^b A.I.S.T, Tsukuba, 305-8568 Japan and Nat. Inst. Mat. Phys., POB MG-7, Bucharest, Romania

^c Tokyo University of Science, Yamazaki 2641, Noda, Chiba, 278-8510, Japan

^d J.A.E.R.I, Tokai, Ibaraki 319-1195 Japan

Abstract

To enhance or improve critical currents density (J_c) and irreversibility field (H_{irr}) of (Cu,C)Ba₂Ca₃Cu₄O_{10.5-δ} (Cu,C)-1234, pinning centers were introduced by heavy-ion in these compounds and we have investigated their heavy-ion irradiation dependence. The polycrystalline samples were irradiated with Au¹⁵⁺ ions (240 MeV energy) at various fluence of 1×10^{11} , 2.5×10^{11} and 5×10^{11} ions/cm². J_c and H_{irr} were determined for the irradiated samples as well as unirradiated samples. J_c (77K, 1T) increase from 3.9×10^4 A/cm² to 4.1×10^6 A/cm² for at fluence of 1×10^{11} ions/cm² of heavy-ion irradiated sample and decreases with further increase of fluence. These results indicate the possibility of further enhancement of J_c and of achieving a very high H_{irr} of (Cu,C)-1234 below a fluence of 1×10^{11} ions/cm².

Key words: Heavy-ion irradiation; (Cu,C)-1234; Magnetic measurement; Critical Current density (J_c); Irreversibility field (H_{irr})

1. Introduction

It is known that the distance between the group of CuO₂ layers is one of the key factors which determine the two-dimensionality of the oxide superconductors. The crystal structure of (Cu,C)-12(n-1)n series is analogous to that of materials described as MBa₂Ca_{n-1}Cu_nO_{2n+2-δ} (M=Hg [1], Tl[2], Cu [3] etc.). For the practical applications of superconductors such as superconducting magnets, J_c must be high enough in applied magnetic fields, which requires the introduction of effective pinning centers. Especially, in Cu- based superconducting cuprates, (Cu,C)-1234

could be promising candidates for the application of the next generation because of high critical temperature (T_c), J_c and H_{irr} . In previous papers[4, 5], we reported the effect of the introducing pinning centers into (Cu,C)-1234 by heavy-ion or neutron irradiation. From these results, introducing pinning centers by heavy-ion is effective to increase J_c and H_{irr} for (Cu,C)-1234. Here, we report on the dependence of the heavy-ion irradiation of the polycrystalline (Cu,C)-1234.

2. Experimental and results

The polycrystalline (Cu,C)-1234 was prepared by the solid state reaction method using the high-pressure apparatus (RIKEN CAP-07, ~3.5 GPa, 1173~1373 K

¹ Corresponding author. Present address: Superconducting Materials Group, Nanoelectronics Research Institute, A.I.S.T, Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 Japan
E-mail: h.kito@aist.go.jp

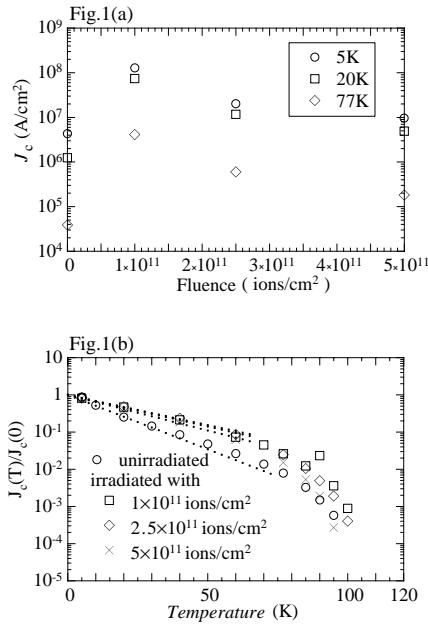


Fig. 1. (a) Irradiation dependence of J_c values for (Cu,C)-1234 and (b) Temperature dependence of $J_c(T)/J_c(0)$ values for (Cu,C)-1234.

for 2 hours). Nominal composition was (Cu_{0.5} C_{0.5})-1234. X-ray diffraction patterns of powdered sample were obtained by using Rigaku RINT 1000 diffractometer equipped with a graphite monochromator on the counter side. Lattice parameters are determined to be $a = 3.860 \text{ \AA}$, $c = 17.96 \text{ \AA}$. Polycrystalline samples were cut and polished into thin discs less than 100 μm in thickness. Samples were irradiated with Au¹⁵⁺ ions, which were accelerated to 240 MeV with the fluence of 1×10^{11} ions/cm², 2.5×10^{11} and 5×10^{11} ions/cm² at room temperature using a Tandem accelerator at JAERI. The ion energies were estimated from the range-energy relations proposed by Ziegler[6]. For the heavy-iron irradiated (Cu,C)-1234 samples, the length of the ion tracks was determined by the stopping powers calculated using TRIM 2000 codes. The tracks of the Au¹⁵⁺ ion of 240 MeV were 12.2 μm and this value being smaller than the thickness of the (Cu,C)-1234 samples, so that all of the irradiated ions stop inside of the samples. Superconducting transition temperature T_c determined from ac susceptibility is 118K. T_c of these compounds slightly decreased ($\sim 1 \text{ K}$) after irradiation.

J_c is determined from M - H curves using the Bean's model [7], $J_c (\text{A}/\text{cm}^2) = h_p/d$, here the effective particle size d was used 2 μm . Detail of the determination of d was described as in previous paper[5]. J_c shows a remarkable increase from 3.9×10^4 to $4.1 \times 10^6 \text{ A}/\text{cm}^2$ at 77 K and 1T for heavy-ion irradiated with the fluence of 1×10^{11} ions/cm² (Fig.1(a)). For the fluence

higher than 1×10^{11} ions/cm², J_0 slightly decreases. It is reported that J_c values of oxide superconductors decrease exponentially with temperature, $J_c \propto \exp(-T/T_0)$ [8, 9]. This demonstrates that heavy-ion defects significantly improve the current-carrying properties of (Cu,C)-1234, as shown in Fig.1(b). Similar behavior reported for HgBa₂Ca₂Cu₃O_{8+δ} (Hg-1223)[10]. The parameter T_0 of (Cu,C)-1234 slightly decreases for the fluence higher than 1×10^{11} ions/cm² because of the damaging sample surface. The values of H_{irr} at 77K for heavy-ion irradiated (Cu,C)-1234 extrapolating the $J_c(H)$ curves to a J_c criterion of $10^3 \text{ A}/\text{cm}^2$, increased 12.5T. This value is higher than for neutron irradiated (Cu,C)-1234[4, 11] and is also comparable with that of NdBa₂Cu₃O_{7-δ} with best pinning center engineering [12]. H_{irr} is described by the power law dependence of $H_{irr}(T) = H_{irr}(0)(1 - T/T_c)^\alpha$. The exponent α values are 2.0 for the unirradiated (Cu,C)-1234, 1.8 for the irradiated with the fluence of 1×10^{11} ions/cm², 2.3 for the irradiated with the fluence of 2.5×10^{11} ions/cm² and 3.3 for the irradiated with the fluence of 5×10^{11} ions/cm², respectively. The α value increases more than the fluence of 1×10^{11} ions/cm². The α value for the irradiated (Cu,C)-1234 with the fluence of 1×10^{11} ions/cm² is smaller than that of Hg-1223[13], but slightly larger than those of YBa₂Cu₃O_{7-δ} and YbBa₂Cu₃O_{7-δ} [14, 15]. Heavy-ion irradiation was much effective to introduce strong pinning centers in (Cu,C)-1234. These results indicate the possibility of the further enhancement of J_c and H_{irr} of (Cu,C)-1234 below the fluence of 1×10^{11} ions/cm².

References

- [1] A.Schilling *et al.*: Nature 363(1993)56.
- [2] S.S.P.Parkin *et al.*: Phys.Rev.Lett. 61(1998)750.
- [3] H.Ihara *et al.*: Jpn.J.Appl.Phys. 33(1994)L503.
- [4] H.Kito *et al.*: Physica C357-360(2001)234.
- [5] H.Kito *et al.*: Physica C(in print).
- [6] J.F.Ziegler: Handbook of Stopping Cross Sections for Energetic Ions in All Element, Pergamon Press, New York, 1980.
- [7] C.P.Bean: Rev.Mod.Phys. 36(1964)31.
- [8] S.Senoussi *et al.*: Phys.Rev. B37(1988)9792.
- [9] M.Paranthaman *et al.*: Physica C213(1993)271.
- [10] A.Wisniewski *et al.*: Phys. Rev. B61(2000)791.
- [11] H.Kumakura *et al.*: IEEE Trans. Appl. Supercon. 5(1995)1399.
- [12] N.Harish Kumar *et al.*: Supercond. Sci. Technol. 13(2000)1356.
- [13] U.Welp *et al.*: Physica C218(1993) 373.
- [14] C.-Q.Jin *et al.*: Phys. Rev. B61(2000)778.
- [15] T.Nakane *et al.*: Physica C338(2000)25.