
Tomonaga-Luttinger-liquid behavior in conducting carbon
nanotubes with open ends

Hideo Yoshioka a,1

aDepartment of Physics, Nara Women’s University, Nara 630-8506, Japan

Abstract

We discuss the local density of states (LDOS) of the semi-infinite conducting carbon nanotube based on the
bosonization theory of one-dimensional electron systems with open boundaries. The dependences of the spatially
slowly varying component of the LDOS on location, energy and temperature are investigated.
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It has been well known that one-dimensional (1D)
interacting electron systems show the behaviors called
as Tomonaga-Luttinger-liquid (TLL), which is charac-
terized by separation of the charge and spin degrees
of freedom, and the interaction-dependent anomalous
exponents of correlation functions. Carbon nanotubes
(CNs) are one of the most promising candidates where
such exotic correlation effects can be observed. In fact,
in the transport experiments[1,2], power-law depen-
dences of the conductance as a function of temperature,
T , and of the differential conductance as a function of
bias voltage have been observed in the metal-CN junc-
tions and in the CN-CN junctions. These results have
been interpreted to be due to tunneling between the
Fermi liquid (FL) and the TLL in the former (the TLL
and the TLL in the latter).

In the TLL state with the boundary, the local den-
sity of states (LDOS) shows the anomalous behaviors
different from that of the FL state[3]. For example, the
LDOS at the edge and that at the bulk show the power-
law dependence as a function of energy at T = 0, but
the exponent of the former is different from that of the
latter. We investigate the anomalies in the LDOS of
the conducting CN in detail. The spatial, energy and
temperature dependences of the LDOS are discussed.
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We treat an (N,N) armchair CN as a model of
conducting CN. The bosonized Hamiltonian effective
for the low energy properties of the CN with the open
boundaries is written as[4], H =

∑
j=ρ,σ

∑
δ=±Hjδ

where Hjδ = πvjδN/(8L)(∆Njδ + (4ν/3)δjρδδ−)2 −
δjρδδ+µ∆Nρ+ +

∑
q>0

vjδqb
†
jδ(q)bjδ (q) with L being

the length of the CN and written as L/a = 3n + ν
(ν = 0,±1, n : integer, a : lattice spacing of a
graphite sheet). Here, δ = +/− expresses the symmet-
ric/antisymmetric combination between the valleys of
the charge/spin (j = ρ/σ) excitation, ∆Njδ is the ex-
cess number in the mode (jδ) and [bjδ(q), b†j′δ′(q

′)] =
δjj′δδδ′δqq′ . The velocities are given as vρ+N =
v0/K

2
ρ+, vρ+ = v0/Kρ+ and vjδN = vjδ = v0 for the

others where v0 and Kρ+ ≡ e2ϕ are respectively the
Fermi velocity and the parameter depending on the
interaction (Kρ+ = 1 for non-interacting case and
Kρ+ � 0.2 for (10,10) CN). In the above Hamiltonian,
the shift of the chemical potential, µ, corresponding
to the applied gate voltage or difference between work
function of the CN and that of the substrate are in-
troduced. The electron operator of the spin s = ± and
the sublattice p = ±, aps(�), are written as aps(�) =

eiK0
yy

√
a/(4N)

∑
α,β=± βp

(1+α)/2eiαβK0xψRαs(βx)

where K0
y = 2π/(

√
3a), K0 = 2π/(3a) and ψRαs(x) =

(ηαse
−iθαs/

√
2πã) exp[iπx/(4L){∆Nρ+ + α(∆Nρ− +

4ν/3)+s∆Nσ+ +αs∆Nσ−}] exp[(i/2){coshϕφρ+(x)−
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Fig. 1. The NLDOSs, De(ω, T ) and Db(ω, T ), as a function of

ω̃ã/vρ+ for πTã/vρ+ = 0 (solid curve), 0.1 (dashed one) and

0.3 (dotted one).

sinhϕφρ+(−x)+αφρ−(x)+sφσ+(x)+αsφσ−(x)}] with

φjδ(x) =
∑

q>0

√
π/(qL)

{
eiqx−ãq/2bjδ(q) + h.c.

}
(ã

is the cut-off of the order of the radius of the tube).
Here, {ηαs, ηα′s′} = 2δαα′δss′ , [θαs,∆Nρ+(−)] = i(iα),
and [θαs,∆Nσ+(−)] = is(iαs).

The LDOS given by the thermal average of
(2π)−1

∫ ∞
−∞ dteiωt

{
a†ps(�), aps(�, t)

}
consists of the

spatially slowly varying component and the part
with rapid oscillation. The former in the case of
Kρ+ = 1 is a constant given by a/(2πv0N). We dis-
cuss the slowly varying component normalized by
the value. The dimensionless LDOS is called as the
NLDOS in the following. The NLDOS is obtained
for the semi-infinite case, L → ∞, as D(x,ω, T ) =
v0/(2πã)

∫ ∞
−∞ dtei(ω−µ)t{u(x, t, T ) + (t→ −t)} where,

u(x, t, T ) =

[
ãh(t)

ã − ivρ+t

](Kρ++K−1
ρ+ )/8 [

ãh(t)

ã − iv0t

]3/4

×
[
ã + i(2x− vρ+t)√

(2x)2 + ã2

ã − i(2x+ vρ+t)√
(2x)2 + ã2

× h2(2x/vρ+)

h(t + 2x/vρ+)h(t − 2x/vρ+)

](Kρ+−K−1
ρ+ )/16

, (1)

where h(t) = πTt/ sinh(πTt). Thus, the center of
LDOS moves as much as the shift of the chemical po-
tential. Note that D(x, µ, 0) = 0 as long as Kρ+ < 1.

At first, we consider the NLDOS at the end (x = 0)
and the bulk position (x = ∞). We show De/b(ω, T ) ≡
D(0/∞, ω, T ) in Fig.1 as a function of ω̃ = ω − µ for
several choices of T , where Kρ+ = 0.2 is used. Both
De(ω, 0) and Db(ω, 0) show the power-law behavior as

Dj(ω, 0) = K
1/4
ρ+ (ω̃ã/vρ+)αj/Γ(αj + 1) where αb =

(Kρ+ +K−1
ρ+)/8− 1/4 and αe = (K−1

ρ+ − 1)/4. For T >
0, the spectral density appears at ω = µ as Dj(µ, T ) =

K
1/4
ρ+ (2ãπT/vρ+)αj Γ2((αj + 1)/2)/Γ(αj + 1)/π.
Next we consider the case for x � ã. The quantities,

D(x,ω, 0) and D(x,µ, T ), show the following scaling

behaviors,D(x,ω, 0) = (2/π)K
1/4
ρ+ (ã/2x)αbF (2xω̃/vρ+)
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Fig. 2. Scaling functions, F and G, as a function of X. The

dotted and dashed curves express the asymptotic behavior for

X � 1 and X � 1, respectively.

and D(x,µ, T ) = (2/π)K
1/4
ρ+ (ã/2x)αbG(2πTx/vρ+),

where,

F (X)

G(X)

}
= −(sin

παb

2

X∫
0

dy + sin
παe

2

∞∫
X

dy)

{
f(y)

g(y)
, (2)

f(y) =
cos y − 1

yαb+1

Xαe

[(X + y)|X − y|](αe−αb)/2
, (3)

g(y) =
Xαb

sinhαb+1 y

[
sinh2X

sinh(X + y) sinh(X − y)

](αe−αb)/2

− Xαb

yαb+1

[
X2

(X + y)|X − y|

](αe−αb)/2

. (4)

The scaling functions, F (X) and G(X), are shown in
Fig.2 for Kρ+ = 0.2. Note that both F (X) and G(X)
are proportional to Xαe (Xαb) for X � 1 (X � 1).

Finally, we comment on the quantitative difference
between the present results and the case of the 1D
Hubbard model. In the 1D Hubbard model away from
half-filling, which is well understood in terms of the
TLL, the bulk and end exponent do not exceed 1/8 and
1/2, respectively[3]. On the other hand, for example,
the exponent in the (10,10) CN is about 0.4 for the
bulk and 1.0 for the end. The larger values are due to
the long range nature of the mutual interaction. In this
sense, the CN is considered to be a system in which
one can observe the TLL behavior well.

This work was supported by Grant-in-Aid for En-
couragement of Young Scientist (No. 13740220) and for
Scientific Research (A) (No. 13304026) and (C) (No.
14540302) from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

[1] M. Bockrath et al., Nature (London) 397 (1999) 598.

[2] Z. Yao et al., Nature (London) 402 (1999) 271.

[3] A.E. Mattsson et al., Phys. Rev. B 56 (1997) 15615.

[4] H. Yoshioka, Y. Okamura, cond-mat/0205503.

2


