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Abstract

We report on a Ginzburg-Landau calculation of the stability of a boundary between A and B phases of superfluid
3He in a two-dimensional constriction. In the macroscopic limit the stability follows a well-known relation, which
depends on the surface tension σAB of the A-B boundary. In the narrow-constriction limit the surface tension is
not well defined, but the interface is always stable, and a weak link between the A and B phases is obtained.
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1. Pinning of A-B interface

Properties of the A-B interface in superfluid 3He
have previously been studied in some detail [1]. Most of
the experimental and theoretical considerations were
involved with nucleation problems, propagation of the
free boundary, or determination of its order parame-
ter structure and surface tension [2–4]. In contrast, we
wish to study the conditions under which the bound-
ary can be stabilized in a weak link, and the properties
of the resulting current-phase characteristics. In this
paper we concentrate on an analysis of the stability
aspect, using the Ginzburg-Landau (GL) theory. We
consider a two-dimensional model which approximates
a long narrow slit in a planar wall.

It is well known that in the macroscopic limit the
pinning stability of the interface is determined only by
its finite surface tension σAB [2]. For a slit of width W
the stability condition is

|∆fAB| <
2σAB

W
, (1)

where ∆fAB = fA − fB is the difference in bulk con-
densation energy densities of the two phases. However,
the macroscopic concept of surface tension is not well-
defined in the limit of small constrictions, and Eq. (1)
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Fig. 1. Equilibrium position of the A-B interface in the channel

at different pressures: (a) p = p0, (b) p > p0, (c,d) p < p0 .

The thick arrows denote orientation of l̂ vector when there is

A phase in the respective regions.

is not necessarily valid then. In any case, σAB is de-
fined only for ∆fAB ≈ 0. In the GL regime, ∆fAB

can be varied by applying different pressures or mag-
netic fields. In this paper we choose the first of these
methods, and use in our calculations the Sauls-Serene
strong-coupling parameters [5].

Figure 1 shows schematically where the A-B bound-
ary stabilizes at different ambient pressures. At a coex-
istence point (T, p) = (T0, p0) in temperature-pressure
plane both bulk phases are equally stable and ∆fAB =
0 (in GL theory T0 is arbitrary). However, A phase is
more stable inside the channel, and the interface will
settle to the B phase end (a). Upon increasing the pres-
sure, the interface will bulge (b) and eventually go un-
stable [2]. If the pressure is decreased, the opposite (d)
will happen, but first a (rapid) transition through (c)
must occur. The situation is not symmetric, and, a pri-
ori, the critical |∆fAB| may be different in opposite di-
rections. There may also be hysteresis associated with
the paths (a-b-a) or (a-d-a).
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Fig. 2. Stability of the A-B interface inside a 2D slit. The

solid curves calculated for different wall thicknesses (4 and 20)

coincide. The dash-dotted line marks the hysteretic transition

in the thick-wall case, where A phase penetrates back into the

channel when the path (a-c-d) is reversed before the instability.

The vertical dotted line corresponds to the melting pressure for

the Sauls-Serene parameters [5], and the curved dotted lines

to an extrapolation of Eqs. (1) and (2) for all p (see text).

2. Numerical results

Our computational method employs a standard min-
imization routine for the GL free energy functional,
which is discretized in and around the aperture. A lat-
tice spacing of one ξGL was used in the larger apertures,
where refinement had no noticeable effect on the sta-
bility behavior (ξGL =

√
K/α [4]). As boundary con-

ditions, we assumed diffusive walls, and any orienta-
tions of the bulk A and B phase order parameters were
made possible. Bulk cutoffs were chosen far enough, so
that the phase boundary could freely bulge and escape
at the instability.

For a free planar boundary, the lowest value of σAB

should be attained when the bulk orientations of the
A and B order parameters and the interface normal
ŝ satisfy d̂µ = ±Rµiŝi [1]. We shall restrict to this
case here also, with ŝ now the wall normal. Tests with
other configurations show that the obtained critical
values can fluctuate somewhat, sometimes causing the
instability to occur slightly earlier.

We have mostly tested apertures in walls of two dif-
ferent thicknesses, D/ξGL = 4 or 20, and we found no
difference in their critical |∆fAB| values (see Fig. 2).
There is hardly any hysteresis in the B phase end (a-b-
a), and the transition (a-c) is not clear-cut for channels
this short. In contrast, there is strong hysteresis in the
A phase end (a-d-a). This is because there is an energy
barrier for A phase to re-enter the channel, since the
inevitable bending of l̂ requires the formation of a line
singularity in one corner of the channel end. Hence, as

the pressure is increased at point (d), the boundary
tends to first freeze at the A phase end, and then jump
directly to the B phase end.

From the asymptotic behavior of Fig. 2 we also con-
clude that, at (T, p) = (T0, p0),

σAB = (0.72 ± 0.2)ξT fB, (2)

where ξT is now defined as in Ref. [2] for simplicity of
comparison. The upper and lower limits correspond to
fits to the right and left branches, respectively. This re-
sult is in good agreement with the calculations of Refs.
[3,4], although the macroscopic limit has only been ap-
proached up to W/ξGL = 70. This scheme for the de-
termination of σAB is also closer in spirit to the ex-
periment of Ref. [2], with the suppression of the order
parameter at solid surfaces, the pinning, and the inter-
facial curvature all being taken into account.

As for the units of Fig. 2, note that fA, fB, and
ξGL are themselves dependent on T and p. To be ex-
act, the dotted curves corresponding to an extrapo-
lation of Eqs. (1) and (2) assume that the path in
(T, p) plane is taken such that ξGL(T, p)fB(T, p) =
ξGL(T0, p0)fB(T0, p0), with T0 as a free parameter.

3. A-B interface and weak links

Ultimately, we are interested in the weak-link prop-
erties of the A-B interface. The most relevant regime
in Fig. 2 is then W/ξGL � 10, since a significant sup-
pression of the order parameter is required for a proper
weak link realization [1]. In this case the pinned inter-
face is stable for all physically obtainable pressures, and
therefore a slit-like A-B weak link is well defined and
experimentally feasible. As an interesting feature, we
note that the associated current-phase relations are π
periodic under the same condition d̂µ = ±Rµiŝi which
was assumed above. These issues will be addressed else-
where in more detail.
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