

Thermodynamic properties of MgCNi₃ superconductor

C. Q. Jin^{a,1}, Y. L. Zhang^a Z. X. Liu^a F. Y. Li^a W. Yu^a R. C. Yu^a

^a*Institute of Physics, Chinese academy of Sciences, P. O. Box 603, Beijing 100080, P. R. China*

Abstract

We have measured the magnetic properties on the high quality polycrystalline sample of the recently discovered ternary carbide superconductor MgCNi₃. The lower critical field, the upper critical field and the thermodynamic critical field were estimated. The coherence length, penetration depth, and the Ginzburg-Landau parameter were calculated, respectively.

Key words: MgCNi₃ superconductor; magnetic property; thermodynamic parameter

1. Introduction

The discovery of 39 K superconductivity in MgB₂[1] initiated a new round of research fever to search new superconductors in the category of intermetallic compounds. Recently He *et al.*[2] reported the superconductivity in MgCNi₃ at critical transition temperature 8 K. Structurally MgCNi₃ provides the chance to compare the overall perovskite-like superconductor including HTSC and the conventional Ba_{1-x}K_xBiO₃[3]. The large ratio of Ni (60% in molar ration) makes MgCNi₃ an intriguing compound to investigate the possible magnetic interaction with superconductivity [4]. S. Y. Li *et al.* measured the transport properties of the MgCNi₃ at the applied magnetic field and calculated the Hall coefficient, density of states, and the upper critical field. Their experiments suggest that the MgCNi₃ is a conventional type-II superconductor with coherent length $\xi_0 \sim 47\text{\AA}$ [5]. The NMR experiment [6] showed $2\Delta/K_B T_c$ is 3.2 comparable to the weak-coupling BCS value 3.53, suggesting that MgCNi₃ might be an isotropic s-wave superconductor. The thermodynamic property of the superconductor in many ways manifests the pairing symmetry at the low-lying states at the temperature region below T_c. Here we report the magnetic measurements on

MgCNi₃ superconductor from which the critical field H_{c1}, H_{c2}, and H_c were obtained and the coherence length, penetration depth and the G-L parameter were calculated.

2. Experimental

The MgCNi₃ compounds were prepared using the solid reaction method similar to that described in ref [2]. The starting materials were magnesium powder (2N purity, 80mesh), glass carbon (Alfa, 3N purity), fine nickel powder (3N purity, > 300 mesh). The raw materials were carefully mixed and pelletized, then sealed in an evacuated quartz tube. The compounds were sintered at 600°C for a short time (30 min) before further treated at 900°C for 3 hr. The phase is pure as checked by powder x-ray diffraction. The microstructure, composition and morphology were studied by HRTEM, SEM-EDAX. The superconducting properties were qualified and measured magnetically using dc SQUID or Mag-Lab magnetometer and electrically using the four-probe method.

3. Results and Discussion

Figure 1 shows the superconducting transition curves of the MgCNi₃ sample. Magnetic moment mea-

¹ Corresponding author. E-mail: cqjin@aphy.iphy.ac.cn

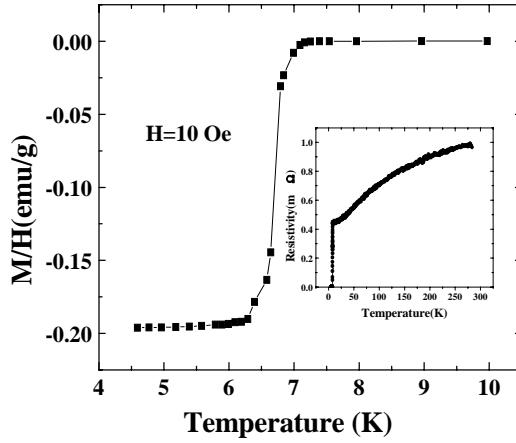


Fig. 1. The superconducting transition of the MgCNi_3 sample.

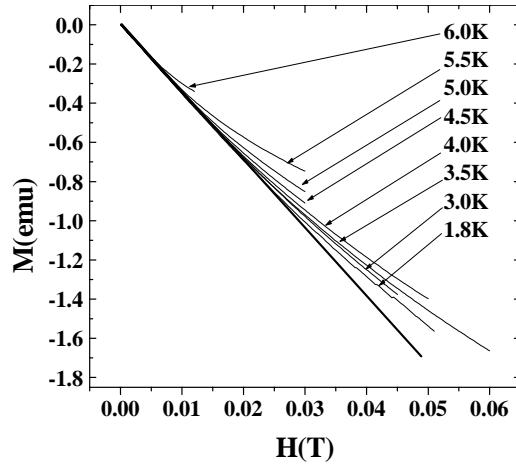


Fig. 2. The initial magnetization of the MgCNi_3 compound.

surements of the sample in ZFC model indicate a rather steeper superconducting transition. The inset of Fig.1 is the R-T curve showing a sharp superconducting transition with the critical temperature around 8 K. The nearly flat shielding signal at low temperature indicates the high quality of the sample in terms of homogeneity and improved intergrain links, which make the sample more suitable to conduct the bulk property measurements. Figure 2 provides the initial magnetic moments versus applied field at various temperatures. Employing the first ten points, a Meissner line was drawn using the least-square fit. This sets the linear base line to determine the H_{c1} where the experimental data deviate from the extrapolated Meissner relation. The value of thus obtained H_{c1} is threshold dependent. Choosing criteria 0.3×10^{-4} emu deviation from the linearity, the H_{c1} data of MgCNi_3 can be obtained from the initial M-H curve, and thus extrapolated $H_{c1}(0)$ is 126 Oe.

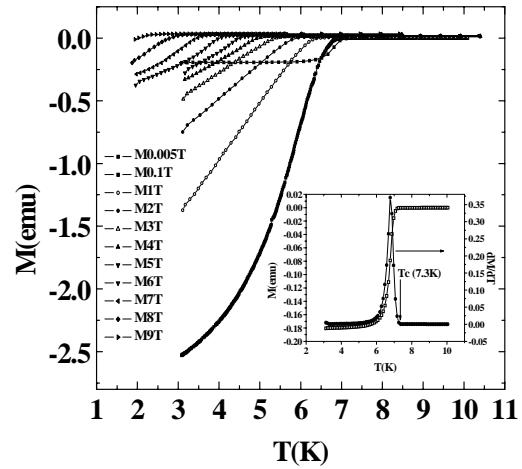


Fig. 3. The dc susceptibility of the MgCNi_3 superconductor.

Figure 3 shows a set of measurements of magnetic moment as function of temperature at various of applied field in ZFC model. To define the upper critical field H_{c2} , the magnetic data were differentiated. The T_c value was chosen as the jump point of the dM/dT as shown in the inset of Figure 3. Using the WHH formula, $H_{c2}(0) = 0.69T_c|dH_{c2}/dT|_{T=T_c}$, $H_{c2}(0) = 16$ T with $T_c = 7.3$ K is obtained. Assuming an isotropic superconductivity, the coherence length was calculated using the G-L relation $H_{c2} = \Phi_0/2\pi\xi^2$. The obtained $\xi(0)$ is 45 Å, in good agreement with the result of 47 Å from the magnetoresistance measurement[5]. According to $H_{c1} = (\Phi_0/4\pi\lambda^2)\ln(\lambda/\xi)$, the penetration depth $\lambda(0)$ was calculated to be ~ 2300 Å. Consequently the Ginzburg-Landau parameter, $\kappa = \lambda/\xi$, is calculated to be about 51. Using the relation $H_{c1}H_{c2} = H_{c2}\ln\kappa$, the thermodynamic critical field H_c was calculated to be 0.6 T.

Acknowledgements

We thank the NSF for the financial support.

References

- [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410 (2001)63
- [2] T. He et al., Nature, 411 (2001)54
- [3] R. J. Cava et al., Nature 332 (1988)814
- [4] H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, E. Tosatti, Phys. Rev. Lett., 88 (2002)27001
- [5] S.Y. Li et al., Phys. Rev. B 64 (2001)135205
- [6] P. M. Singer, T. Imai, T. He, M.A. Hayward and R. J. Cava, Phys. Rev. Lett. 87 (2001)257601