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Abstract

The selfconsistent T-matrix approximation (SCTMA) for an alloy model of defects, described by scattering poten-
tials of arbitrary range, is used to calculate quasiparticle lifetime effects as well as the order parameter renormaliza-
tion in 2D d-wave superconductors. The study has been motivated by measurements of the microwave conductivity
at low temperatures of extremely high quality samples of YBCO, the results of which do not really fit into the
widely accepted d-wave picture. Poorly screened defects outside the CuO2-planes could be the cause of the dis-
crepancy. Apart from changing the single particle properties, the finite range of the defects affects the conductivity
through vertex corrections, which project out forward scattering.
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1. Introduction

The description of nonmagnetic impurities in two-
dimensional d-wave superconductors has turned out to
be far more intricate than in the case of conventional
superconductors, with results depending on the model
used to describe disorder, the underlying band struc-
ture, and the computational methods employed. [1]
In most of the published work, the scattering centers
are assumed to be short ranged (s-wave scattering). In
YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+δ, not intention-
ally doped with Zn, Ni etc, the disorder is due to oxy-
gen nonstoichiometry and cation disorder. The defects
thus reside on lattice sites away from the conducting
CuO2-planes and hence are only poorly screened and
consequently long ranged. In order to generalize previ-
ous work on the conductivity [2,3], in which the case of
coexisting strong and weak s-wave scatterers has also
been considered, we want to treat impurities of arbi-
trary range and strength within the selfconsistent T -
matrix approximation, assuming a circular Fermi sur-
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face and an infinitely wide band. This latter assump-
tion not only simplifies the calculations, it also avoids
artefacts resulting from the weak coupling approxima-
tion. [4] A finite range of the defect potentials intro-
duces vertex corrections into the calculation of the elec-
trical conductivity and renders the ”universal conduc-
tivity” nonuniversal thus improving agreement with
experiment. [5] However, it also leads to a selfenergy
which renormalizes the d-wave order parameter OP. As
can be seen below, the small but finite density of states
(DOS) at zero energy found even in the Born limit
for s-wave scatterers does not exist for purely forward
scattering. If the pairing interaction is modelled such
that the OP has the form cos 2φ, then this form is not
changed by the selfenergy. However, the Tc-reduction
caused by scattering in unconventional superconduc-
tors can be argued away by invoking mostly forward
scattering. [6] In view of the large amount of doping
related disorder, this could be a very important point.
For more complicated pairing interaction, the shape
of the gap will be changed by momentum dependent
scattering. [7]
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2. Theory and numerical results

For the model outlined above the equations for the
components of the T -matrix in an expansion with re-
spect to Pauli matrices read

t0(ϕ,φ) = η

2π∫
0

dψ

2π
U(ϕ−ψ)

[
g0 t

3(ψ,φ) − g1 t
2(ψ, φ)

]

t1(ϕ,φ) = η

2π∫
0

dψ

2π
U(ϕ−ψ)

[
g0 t

2(ψ,φ) − g1 t
3(ψ, φ)

]

t2(ϕ,φ) = η

2π∫
0

dψ

2π
U(ϕ−ψ)

[
g0 t

1(ψ,φ) + g1 t
0(ψ, φ)

]

t3(ϕ,φ) = U(ϕ − φ) +

η

2π∫
0

dψ

2π
U(ϕ−ψ)

[
g0 t

0(ψ, φ) + g1 t
1(ψ,φ)

]

U(ϕ) describes the momentum dependence and hence
the range of the scattering potential. It is normalized
such that

∫
dϕU2(ϕ) = 2π. For pure s-wave scatter-

ing, U = 1, while in the Born approximation the limit
U2(ϕ) = 2πδ(ϕ) could be taken. η = πN(0)v contains
the normal state DOS and the strength of the poten-
tial v. g0(ψ), g1(ψ) are the energy integrated normal
and anomalous Green functions [2],depending on the
selfenergies Σi(ψ) = nimpvt

i(ψ,ψ), i = 0, 1 . For rea-
sons of symmetry, t2(ψ, ψ) = 0 and hence makes no
contribution as in the case of s-wave scattering. Due
to particle-hole symmetry, t3(ψ, ψ) drops out when the
single particle Green functions are energy integrated,
but it does make an important contribution to the con-
ductivity. [2] In general, all four components are re-
quired for the calculation of Σ0,1. The above equations
could be transformed to an algebraic system of equa-
tions by introducing Fourier expansions. [8] Since the
ti depend on ϕ and φ separately, a double expansion
is required. So far, we have solved these equations di-
rectly by iteration. The range of angular integrations
can be reduced by a factor 16 by exploiting various
symmetries. For a sharply peaked U(ϕ) convergence is
obtained only for rather small values of η, correspond-
ing to a selfconsistent Born calculation.For U we have
used a Gaussian

U(ϕ) = I
−1/2
0 (2γ) eγ cos ϕ

Choosing γ = 5, which would in the normal state
give a transport time twenty times larger than the qp
lifetime, we have a FWHM of 0.34π, still comparable
with the range of angles in which the OP changes
from minimum to maximum. Kee [6] uses a potential

which is an order of magnitude narrower. Clearly, a
detailed calculation of the potential arising from an
out-of-plane defect is highly desirable.
For the rather weak scattering considered so far,

Fig. 1. Σ0 ≡ ωZ(ω) − ω as function of angle. 45◦ is the nodal

direction. ∆(T = 9K) = 16.6meV. η = πN(0)v = 0.16 and

nimp/πN(0) = 0.5meV have been used in the calculation. This

corresponds to a normal state scattering rate of 0.012meV.

ReΣ1(ω,ϕ) ∝ ∆(T ) cos 2ϕ is independent of ω, while
ImΣ1(ω,ϕ) ∝ ω2 shows a more complicated angular
dependence. Shown in the figure is Σ0(ω,ϕ), which is
approximately proportional to ω for ω << ∆(T ) as
in the case of s-wave scattering. For this reason we
plotted Σ0/ω. The size of Σ0 has been increased by
more than an order of magnitude by increasing nimp

and η, but the significant variation with angle is de-
termined mainly by the width of U(ϕ). This variation,
which is largest for small frequencies, should have a
profound effect on the microwave surface resistance.
Calculations are in progress.
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