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Abstract

The energy of a weak-coupling Fröhlich polaron in a uniaxial anisotropic semiconductor with complex structure,
placed in a d.c. magnetic field directed along the optical axis, are obtained in the context of the improved Wigner-
Brillouin perturbation theory. We consider a quasi-two-dimesional (q-2D) behavior of the conduction electron
whereas the phonon sysytem is a three-dimensional one. In order to avoid the real phonon emission phenomenon,
the discussion is restricted to the lower branch of the magnetopolaron spectrum. The contributions of all sources of
anisotropy to the magnetopolaron spectrum are sistematically considered. The q-2D behavior of the electron gas
is taken into account by considering a finite extent along the optical axis of a variational electron wave function.
In the particular case of parabolic form for the confining potential, the theoretical results could be improved by
considering the contribution of all intermediate states to the cyclotron resonance phenomenon.
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The measurements of Subnikov- de Hass oscillations
and cyclotron resonance performed at low tempera-
tures in the layered compound InSe [1], have shown an
apparently two-dimensional (2D) behavior of the elec-
tron gas. The extension [2] of the cyclotron measure-
ments in the domain of magnetopolaron splitting ar-
gued for considering a finite width of the electron gas.
However, in the spite of its succes in the explanation of
the experimental results, the model used in Ref.2 dis-
cusses the effect of the sources of anisotropy on the cy-
clotron resonance in a simplified manner. In this paper
the results obtained [3] for the energy spectrum of an
anisotropic (uniaxial) 3D polaron in a magnetic field
are extended to the q-2D case by coherently taking into
account the contributions of all sources of anisotropy.

In the presence of both a magnetic field B0 (intro-
duced by a symmetrical Coulomb gauge) directed along
the optical axis (parallel with z-axis) and a confining
potential V (z), the Hamiltonian of a conduction elec-
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tron interacting with optical phonons in a uniaxial po-
lar crystal having a complex structure is:

H = h̄ω(A+A + 1/2) +
p2

z

2m‖
+ V (z)

+
∑

q,µ

h̄ωµ(q)b†q,µbq,µ +
∑

q,µ

(
Vµ(q)√

V
bq,µeiq·r + H.c),(1)

where, the significance of the involved quantities is
given in Ref.3.

In the frame of Wigner-Brillouin perturbation the-
ory, the second-order-energy correction of the unper-
turbed state |Ψi〉 = |n,m.l〉 ⊗ |0〉ph = |n〉A ⊗ |m〉B ⊗
|l〉 ⊗ |0〉ph has the expression (see Ref.4 for some de-
tails):

∆En,l = − 1

V

∑

q,µ

|Vµ(q)|2

×
∑

n′ ,m′ ,l′

|〈n,m, l|eiq·r|n′,m′, l′〉|2
h̄ω(n′ − n) − ∆n,l + El′ − El + h̄ωµ(q)

, (2)
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Fig. 1. The lower magnetopolaron branch in InSe considering

a 3D (continuous line), 2D (dot line), and q-2D Fang-Howard

(dash line) electron wave function, respectively. The calculation

was done using m⊥ = 0.131m0 and m‖ = 0.081m0 for the

bare electron effective mass tensor.

Fig. 2. The lower magnetopolaron branch in InSe considering a

3D (continuous line), 2D (dot line), and q-2D gauss (dash line)

electron wave function, respectively. The calculation was done

using m⊥ = 0.122m0 and m‖ = 0.081m0 for the bare electron

effective mass tensor. The summation over the intermediate

states was included.

where |l〉 and El denote the state and, respectively, the
energy of the eigenvalue problem corresponding to the
electron z-motion.

Working at zero temperature and considering that
the energies of the excited states for z-motion are larger
than those in the (x,y) plane, we could restrict ourselves
only to the contribution of the fundamental state |l0〉.
The finite z-extent of the electron wave function in
the symmetrical planar layer is considered by taking
into account two forms for the wave function: the one
verifies |ϕ(1)

l0
(z)|2 = (2a)−1e−|z|/a (also considered in

Ref.2) and the other is a Fang-Howard function type,

ϕ
(2)
l0

(z) = (2a3/2)−1ze−|z|/2a.
Fig.1 shows the magnetic field dependence of the cy-

clotron resonance frequency in InSe for the considered
cases (3D, q-2D, and 2D), calculated for the first form
of the variational electron wave function. The cyclotron
resonance energy is defined as the difference between
the first two perturbed Landau levels.

We can observe that, excepting the last experimen-
tal point, in the domain of large magnetic fields the
experimental results are quite well fitted with the first
variational wave function for the value a = 50Å. Simi-
lar results are obtained (but for a = 20Å ) for the sec-
ond form of the electron wave function. Though the two
values of the parameter ”a” which realize the best fit-
ting are different, the width of the q-2D electron layer
defined as w = 〈(z−〈z〉)2〉1/2 has the same value ( a =
70Å) for both electron wave functions. Therefore, the
results seem to be independent of the concrete form of
the variational wave function. We have to stress that,
in contradistinction with the model developed in Ref.2,
we do not use, excepting ”a”, other fiting parameters.

In the following we will give some corrections to the
above formulation of the problem. It is clear that re-
stricting us only to the contribution of the fundamental
state |l0〉, the 3D limit of the problem ( a → ∞ ) cannot
be obtained. In addition, based on an estimation of the
electron binding energies [5] of an order of 20−30meV ,
we conclude that, at least for high magnetic field values,
the above considered restriction could be amended. In
order to take into consideration the contributions of
all intermediate states |l〉, we parameterized the con-
fining potential by a parabolic form, i.e. a Gaussian

expression ϕ0(z) = π−1/4a−1/2e−z2/2a2
for the wave

function of the fundamental state. At least at low tem-
perature, this assumption is quite resonable. Also, we
consider the effective mass component m⊥ of the bare
electron as a second fitting parameter. These results
are presented in Fig.2 which shows a very good fit-
ting of the experimental point distribution for the q-
2D curve with a = 40Å. All the curves are obtained for
m⊥ = 0.122m0. With this new value for m⊥ the width
of the electron gas layer is different from that obtained
before. Therefore, instead to consider the anisotropic
electron-phonon coupling constants as fitting param-
eters (as it was done in Ref.2), the most natural way
is realized by taking the components of the effective
mass tensor of the bare electron as having this char-
acter. However, to find the values of the components
of the effective mass tensor for the bare electron the
developed procedure has to assure the best fitting also
for the upper magnetopolaron branch contribution.
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