Specific heat measurements of pyrochlore-type R₂Mo₂O₇ (R=Nd-Ho)

K. Miyoshi ^{a,1}, K. Honda ^a, T. Hiraoka ^a, K. Fujiwara ^a, J. Takeuchi ^a, T. Hamasaki ^b

^a Department of Material Science, Shimane University, Matsue 690-8504 ^b Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503

Abstract

Specific heat measurements have been performed on pyrochlore-type $R_2Mo_2O_7$ (R=Nd-Ho) single crystals. For the ferromagnetic compounds with R=Nd-Gd ($T_C\approx50$ -90 K), Schottky-like specific heat anomalies corresponding to the level splitting for the 4f electrons of R^{3+} are observed at low temperatures, in contrast to the specimens with R=Tb-Ho which show spin-glass-like order below $T_g\approx20$ -25 K. Low-temperature specific heat data of $Sm_2Mo_2O_7$ under a magnetic field of 10 T are presented.

Key words: pyrochlore; specific heat; spin-glass;

Pyrochlore oxides with a general formula A₂B₂O₇ have a face centered cubic structure and each of R and Mo atoms form a three-dimensional network of corner-sharing tetrahedra. In particular, there has been great deal of interest in pyrochlore molybdates R₂Mo₂O₇, because the systems with R=Y and Tb-Er are insulating, geometrically frustrated and undergo a phase transition into a spin-glass-like state despite the absence of apparent structural disorder[1,2], while the systems with R=Nd-Gd exhibit ferromagnetic order with metallic conductivities. Very recently, it has been pointed that the magnetic phase boundary is correlated with the metal-insulator crossover[3] and the structural variation at $T_{\rm C}$ in Nd₂Mo₂O₇ suggests some double-exchange interaction mechanism in metallic $R_2Mo_2O_7[4]$.

In the present work, we have performed the precise measurements of specific heat for $R_2Mo_2O_7$ (R=Nd-Ho) using single crystal specimens, to throw further light on the magnetic ordering. To our knowledge, the specific heat measurements have been so far limited on the polycrystalline specimens of $R_2Mo_2O_7$ with R=Sm, Gd, Y[5]. Single crystals of $R_2Mo_2O_7$ were

grown in an Ar atmosphere by a floating-zone method and confirmed to be a single crystal by Laue reflection. Specific heat was measured by a thermal relaxation method.

In metallic R₂Mo₂O₇, the ferromagnetic ordering of Mo^{4+} ions occurs at $T_{\rm C}$, whereas the ordering of R³⁺ ions are interpreted to gradually develop below $T_{\rm C}$ and become significant below $T_{\rm F}$ ($\ll T_{\rm C}$), as evidenced by recent neutron scattering experiments for $Nd_2Mo_2O_7$ ($T_C\sim 93$ K, $T_F\sim 20$ K)[6]. We show the temperature T dependence of magnetic specific heat $C_{\rm m}$ for $Sm_2Mo_2O_7$ in Fig.1. In deriving C_m , pyrochloretype Y₂Ti₂O₇ which is insulating and nonmagnetic was used to eliminate the lattice contribution $C_{\rm latt}$. In Fig. 1, a sharp anomaly corresponding to the ferromagnetic ordering of Mo⁴⁺ ions is observed at $T_{\rm C}(\approx 80 \text{ K})$, in contrast to the behavior of the polycrystalline specimen in the previous work[5]. The released magnetic entropy $S = \int C_{\rm m}/T dT$ between 70 and 90 K we estimate is only ~ 10 percent of that expected for the ordering of Mo⁴⁺ (4d², S=1), similar to perovskite manganites[7]. The anomaly at $T_{\rm C}$ was also observed for the specimen with R=Nd but not for R=Gd, which is in the vicinity of spin-glass-like state.

In Fig. 1, a Schottky-like anomaly, which is associ-

¹ E-mail:miyoshi@riko.shimane-u.ac.jp

ated with the ordering of Sm³⁺ ions, is observed at low-T and was also observed for the specimens with R=Ndand Gd. The estimated magnetic entropies for these anomalies nearly correspond to that of a two-level system for R=Nd and Sm and an eight-level system for R=Gd, although the peaks of the anomalies are small and broad, compared with standard multilevel Schottky anomalies[5]. In the inset of Fig.1, low-T $C_{\rm m}(T)$ data for H=0 and 10 T parallel to the (111) direction are displayed. In the inset, the peak temperature of the anomaly $T_{\rm p}$ becomes slightly lower by applying a magnetic field of 10 T, indicating that the splitting of the doublet for 10 T (Δ_{10T}) is smaller than that for H=0 (Δ_0), though the behaviors with $\Delta_{H\neq 0}>\Delta_0$ have been found in various materials. To derive $\Delta_{10} < \Delta_0$, we need to assume that the ordering of the Sm^{3+} moments $\mu_{\rm Sm}$ is arising from antiferromagnetic Sm-Mo interactions inferred by the spin arrangement in Nd₂Mo₂O₇, where the net magnetization of the Nd and Mo sublattices are opposite in direction to each other[6]. In this case, the effective molecular field at the Sm sites $H_{\rm m}$ would be antiparallel in average to the applied magnetic field H. Accordingly, we may give the splitting of the doublet as, $\Delta_0=2\mu_{\rm Sm}H_{\rm m}(0)$ for H=0, and $\Delta_{10T} = 2\mu_{Sm}[H_m(10) - 10]$ for H=10 T. These equations satisfy $\Delta_{10} < \Delta_0$ for $H_{\rm m}(0) \le H_{\rm m}(10)$ and yield $\mu_{\rm Sm}=0.065\mu_{\rm B}$ when $H_{\rm m}(0)=H_{\rm m}(10)$. This value of $\mu_{\rm Sm}$ is fairly smaller than the free-ion value of $0.7\mu_{\rm B}$, similar to that of Nd^{3+} in $Nd_{0.67}Sr_{0.33}MnO_3$ [7].

Next, we show the T-dependence of specific heat C_p for the specimens with R=Tb-Ho in the temperature range $2 \le T \le 20$ K in Figs. 2(a)-2(c). As seen in Figs. 2(a) and 2(b), the specimens with R=Tb and Dy do not show any Schottky-like anomaly at low-T, in contrast to those with R=Nd-Gd, although $C_p(T)$ for R=Dy appears to show a very slight hump below 10 K. On the other hand, a low-T anomaly, which was a clear peak but not Schottky-like in shape in the $C_{\rm m}$ (= $C_{\rm p}$ - $C_{\rm latt}$) versus T plot, is observed at ~ 5 K for R=Ho in Fig. 2(c). No anomaly was observed at $\sim T_{\rm g}$ for R=Tb-Ho. The behaviors of $C_p(T)$ for R=Tb and Dy are also forming a contrast with those for Tb₂Ti₂O₇ and $Dy_2Ti_2O_7$, where $C_p(T)$ exhibits a peak at low-T[8,9]. It should be noted that the specific heat anomaly associated with R³⁺ ions remarkably depends on the magnetic order at the Mo site, indicating that the ordering of the R³⁺ moments are much affected by the Mo⁴⁺ moments through interactions. The absence of anomaly at low-T for R=Tb and Dy is attributable to the R³⁺ moments involved in the spin freezing of the Mo^{4+} moments at T_g , so that the magnetic entropies are released in the wide T-range above and below $T_{\rm g}$. In ${\rm Ho_2Mo_2O_7}$, it has been found that the magnetic susceptibility obeys a Currie-Weiss law and is fairly slightly history dependent below $T_{\rm g}$, contrasting the behaviors in Tb₂Mo₂O₇, suggesting that the Ho³⁺

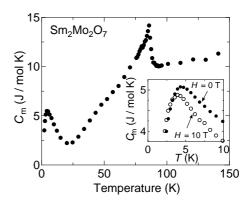


Fig. 1. Temperature dependence of magnetic specific heat $C_{\rm m}$ for ${\rm Sm_2Mo_2O_7}$. Low-T $C_{\rm m}(T)$ data for $H{=}0$ and 10 T are shown in the inset.

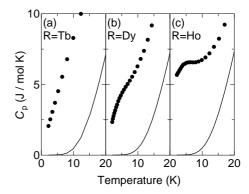


Fig. 2. Temperature dependence of specific heat for $\rm R_2Mo_2O_7$ with R=Tb (a), Dy (b), Ho (c). The solid lines indicate the lattice contributions.

moments are remain almost paramagnetic even below $T_{\rm g}[10]$. The appearance of the low-T anomaly for R=Ho is thought of due to relatively weak R-Mo couplings.

References

- [1] J.S. Gardner $et\ al.$, Phys. Rev. Lett. 83 (1999) 211.
- [2] K. Miyoshi et al., J. Phys. Soc. Japan 69 (2000) 3517 and references there in.
- [3] T. Katsufuji et al., Phys. Rev. Lett. $\bf 84$ (2000) 1998.
- [4]S. Xu $et\ al.,$ J. Phys. Soc. Japan ${\bf 70}\ (2001)\ 2239.$
- [5] N.P. Raju et al., Phys. Rev. B, 46 (1992) 5405.
- [6] Y. Yasui et al., J. Phys. Soc. Japan 70 (2001) 284.
- [7] J.E. Gordon et al., Phys. Rev. B, 59 (1999) 127.
- [8] M.J.P. Gingras et al., Phys. Rev. B, 62 (2000) 6496.
- [9] A.P. Ramirez et al., Nature, 399 (1999) 333.
- [10] K. Miyoshi et al., Physica B, 284-288 (2000) 1463.