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Abstract

Many plateaus with various widths appear in the experimental data of magnetic dependence of the electron spin
polarization in the fractional quantum Hall effect. In the Landau gauge, single electron orbitals have the shape
of equal spaced parallel lines. The many electron state is constructed by a specific electron-configuration so as to
have minimum value of the classical Coulomb energy. The residual Coulomb interaction produces electron spin
exchange interactions. We additionally consider the spin-Peierls effect. When we modulate the intervals between the
orbitals, a small energy gap appears. Consequently, the total energy caused by this modulation is smaller than one
in the non-modulation case, and therefore this modulation really appears. We have obtained all the eigenenergies
for the Hamiltonian with spin exchange interactions under this modulation. Then, the calculated curve of the spin
polarization shows both narrow plateaus and wide plateaus, and is in good agreement with the experimental data.
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1. Spin exchange interaction

Kukushkin, Klitzing, and Eberl have measured the
electron spin polarization in the fractional quantum
Hall effect (FQHE) for twelve filling factors [1]. Their
results show various types of behaviors in the magnetic
dependence of the spin polarization. We explain these
behaviors by solving eigen equations in the present pa-
per. In the integral quantum Hall effect, Laughlin et al
have used Landau gauge, and have clarified the quan-
tization of Hall resistance [2]. Tao and Thouless [3]
have adopted these states in FQHE. But their ground
states are degenerate, so it is difficult to diagonalize the
Coulomb interactions between electrons. In the previ-
ous paper, we have divided the total Hamiltonian HT

into two parts as HT = HD + HI, where the new 0-th
order Hamiltonian HD includes the classical Coulomb
energy. Then, our 0-th order ground state possesses an
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electron configuration with a minimum eigenvalue of
HD, and therefore is not degenerate (see reference [4]).
For the filling factor ν=2/3 as an example, the electron
configuration is the repetition of the sequence (filled,
filled, empty) as is shown in figure (1).
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Fig. 1. Interactions for the filling factor of 2/3 (the dashed

lines show empty orbitals)

This electron-configuration is the most uniform dis-
tribution of electrons for ν=2/3, and therefore has the
minimum classical Coulomb energy. We take account
of the residual Coulomb interactions, which produce
the spin exchange interaction. The spin-exchange in-
teraction has the form as (σ+

1 σ−
2 + σ−

1 σ+
2 ) where σ+

is the transformation operator from a down-spin state
to an up-spin state, and σ− is the Hermitian conjugate
operator of σ+. When we consider the interactions be-
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tween the nearest-neighbor electrons only, we obtain
an approximate Hamiltonian H as
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∑

i=1,2,3,···
[ξ(σ+

2i−1σ
−
2i + σ−

2i−1σ
+
2i) + η(σ+

2iσ
−
2i+1

+σ−
2iσ

+
2i+1)] +

∑

i=1,2,3,···

µBg

µ0
B

1

2
σz

i (1)

where ξ is the coupling constant between two elec-
trons in the nearest orbital-pair, and η is the coupling
constant between two electrons in the second nearest
orbital-pair, g is the g-factor, B is the magnetic field
strength, and µB is the Bohr magneton. The eigen-
value problem for Hamiltonian (1) can be solved by the
method of Reference [5].

2. Spin Peierls Effect and spin polarization

We consider the mechanism of spin-Peierls transition
[6]. That is to say, modulation of intervals between the
orbitals creates two extra-energies, namely, 1) energy-
increasing in the classical Coulomb interactions, and
2) energy-decreasing caused by a gap in the spin ex-
change energy. When the modulation value d is small,
the increasing value in the classical Coulomb energy
is proportional to d2, and the decreasing value in the
spin exchange energy is proportional to |d|. Therefore,
the total energy for a small modulation is smaller than
one in non-modulation case. Therefore, this modula-
tion occurs actually. For ν=2/3, there are two electrons
inside one unit-cell as shown in Figure 1. We change the
intervals wide in the first unit-cell, and change the in-
tervals narrow in the second unit-cell, and so on. Then,
the coupling constant between electrons in nearest or-
bital pair changes from the original value to two values
ξ and ξ′, and also the coupling constant between elec-
trons in second nearest orbital pair changes from the
original value to two values η and η′. We neglect the
difference between η and η′, because its contribution
to the spin polarization is small. Accordingly, we have
the three kinds of coupling constants ξ, ξ′ and η which
are illustrated in Figure 2.
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Fig. 2. Interactions with modulation of orbital intervals

Consequently, we obtain a new interaction Hamilto-
nian as

H =
∑

n=1,2,3,···
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We can solve the eigenvalue problem of Hamiltonian
(2), and we have obtained a new energy gap in the so-
lution. In a real Hall device, there are many random-
potentials. Therefore, we should take the effect of these
random potentials into consideration. We assume that
it is a good approximation to replace the random po-
tential effect with a thermal vibration effect. We there-
fore introduce an effective temperature T. When we

take the values η
ξ

= 0.25, ξ′
ξ

= 1.3 and kBT
ξ

= 0.06, the
calculated curve of the spin-polarization has a narrow
plateau as shown in Figure 3.
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Fig. 3. Experimental data and calculated value of the

spin-polarization for the filling factor 2/3

As is seen in this figure, the calculated curve of the
spin-polarization is in a good agreement with the ex-
perimental data. In the data of Kukushkin et al [1],
other polarization curves for seven filling factors also
show both wide plateaus and narrow plateaus. These
behaviors can be well explained by making use of our
method in this paper.
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