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Abstract

The paper addresses the problem whether and how is it possible to detect the Luttinger-liquid behavior from
the IV curves for tunneling to 1D or quasi-1D conductors. The power-law non-ohmic IV curve, which is usually
considered as a manifestation of the Luttinger-liquid behavior in nanotubes, can be also deduced from the theory
of the Coulomb blockaded junction between 3D conductors affected by the environment effect. The two approaches
predict different power-law exponents for conductance, but the difference becomes negligible for a large number of
conductance channels.
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In a 1D electron gas with arbitrarily weak interac-
tion Landau’s Fermi liquid (FL) theory breaks down,
and the system is expected to behave as a Luttinger
liquid (LL). In the Luttinger liquid, in contrast to FL,
the fermion quasiparticle branch is absent and excited
states of the system must be described by the boson
collective excitations [1]. As a result of it, the IV curve
of a tunnel junction between a normal FL and a LL
conductor is described by a power law with an expo-
nent depending on interaction strength. On the other
hand, the power-law IV curve is also predicted by the
theory of the Coulomb blockade in a junction between
normal FL conductors affected by Environment Quan-
tum Fluctuations (EQF) [2]. Since both EQF and LL
pictures predict a power-law dependence, a problem
arises, how, and whether it is possible at all, to dis-
criminate these two pictures.

At T = 0 the current through the junction is:

I =
1

eRT

eV∫
0

dE1

eV∫
0

ρ(E2)P (E1 − E2) dE2 . (1)
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Fig. 1. Tunnel junction between 3D and 1D (or quasi-1D)

conductor. On the right the cross-section of the 1D conductor

is shown. Arrowed curves are electric-field lines in the space

between the 1D conductor and the metallic ground.

Here ρ(E) is the relative density of the state (DOS) for
the right conductor (Fig. 1) normalized to the constant
DOS of the normal Fermi-liquid, the latter being in-
cluded into the definition of the junction conductance
1/RT . The left conductor is supposed to be always a
FL conductor and its relative DOS is unity. If the right
conductor is also a FL conductor then ρ(E) = 1, and
neglecting the environment effect P (E) = δ(E). Then
the IV curve is ohmic.

The EQF theory [2] assumes that both conductors
are 3D FL conductors, i.e., ρ(E) = 1, but takes into
account phase fluctuations in the electric circuit. Then
P (E) is a Fourier transform of the phase correlator:
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P (E) =
1

2πh̄

∞∫
−∞

〈eiϕ̂(t)e−iϕ̂(0)〉eiEt/h̄ dt . (2)

At E much smaller than the Coulomb energy e2/CT ,
where CT is the junction capacitance, P (E) ∝ EαE−1

is a power-law function with the exponent

αE =
2Z

RK
, (3)

where RK = h/e2 ≈ 26 kΩ is the quantum resistance,
and Z is the low-frequency real impedance of the cir-
cuit. Since P (eV ) = (RT /e)(d

2I/dV 2) the exponent
for conductance G(V ) = dI/dV ∼ V αE is αE.

In the LL theory the environment effects are absent,
and P (E) = δ(E). But because of the electron-electron
interaction ρ(E) essentially different from unity, and
for the end contact ρ(E) ∝ EαL−1 [1], where

αL =
1

N

vpl

vF
+
N − 1

N
, (4)

N is the channel number, vF is the Fermi velocity, and

vpl =

√
v2

F +
2e2NvF

πh̄
ln
rg

r0
(5)

is the velocity of the 1D plasmon. Here r0 is the radius
of the wire and rg is the distance from the metallic
ground (see Fig. 1). Now the exponent for conductance
G(V ) ∼ ρ(eV ) = RT (dI/dV ) ∼ V αL−1 is αL − 1.

The DOS ρ(E) is a Fourier transform of the averaged
operator product 〈ψ̂(x, t)ψ̂†(x, 0)〉 [1], whereas P (E)
is a Fourier transform of the correlator 〈eiϕ̂(t)e−iϕ̂(0)〉.
Since the phase ϕ̂ is an operator conjugate to the op-
erator of the electron number, the operator e−iϕ̂(t) is
a creation operator of the electron like ψ̂†(x, t). One
should expect then similar functional dependencies for
ρ(E) and P (E).

One can see this similarity considering the 1D plas-
mon mode as a wave along a lossless LC transmission
line formed by a 1D conductor and a metallic ground.
The inductance per unit length of the transmission line
is determined by the kinetic energy of electrons, i.e., is
a kinetic inductance ll = RK/2vF for the case of one
channel (N = 1). The capacitance c̃ per unit length
must include the effect of the neutral-gas compressibil-
ity: c̃−1 = c−1

l + c−1
0 , c0 = 2/RKvF . While the geo-

metric capacitance cl = 1/(2 ln rg/r0) is related to the
energy of the electric field between the wire and the
metallic ground, the capacitance c0 is related to the
kinetic energy of the electron Fermi sea. The transmis-
sion line with these parameters supports the sound-like
wave with the velocity 1/

√
ll c̃ , which coincides with

the plasmon velocity vpl given by Eq. (5). Using the

impedance Z =
√
ll/c̃ of the infinite LC transmission

line in Eq. (3) we obtain that αE = αL for N = 1. On

the other hand, the exponents of conductance in two
approaches, αE and αL − 1, differ by unity.

However, Matveev and Glazman [3] have received
that for a large number N of channels both theories
predict the same power law for conductance, i.e. αE =
αL −1. But then αE and αL cannot be equal. The rea-
son for it is that in the LL approach [3] a quantum wire
withN channels is modeled byN parallel transmission
lines. They sustain a plasmon mode with the veloc-
ity vpl, in which the total charge oscillates. The other
N − 1 modes are neutral with the Fermi velocity vF .
The impedance ZL = Z+[(N −1)/N ]RK/2 for such a
system differs from the impedance Z for one transmis-
sion line with the only charged mode used by the EQF
theory [4]. Thus αL = 2ZL/RK = αE + (N − 1)/N ,
while the conductance exponents αL −1 and αE in the
two approaches differ by 1/N . The EQF theory ignores
the neutral modes, which are important in the LL ap-
proach, but takes into account the single-particle exci-
tations, which are absent in the LL approach. Eventu-
ally in the limit of large number of channels the differ-
ence in the impedance exactly compensates the differ-
ence in the exponents of conductance.

This means that it is difficult to detect the LL be-
havior from the IV power law. Even for single-wall
nanotubes, which have four channels, the difference be-
tween the LL and EQF exponents is only 1/N =0.25.
But to detect this difference is very important because
of a conceptual difference between the EQF and the
LL approaches. The LL theory for tunneling takes into
account accurately the Coulomb interaction inside the
LL conductor, but ignores the Coulomb energy e2/CT

of the junction charge. Meanwhile, the junction capac-
itance CT is quite small, and the recent experiment [5]
gives evidences that IV curves of multiwall nanotubes
are better described by the EQF picture.
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