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Abstract

The so-called “distributed τ2 effect” influences the time evolution of temperature in relaxation calorimetry of
samples of poor thermal conductance. Very often a problem for non-metallic and powder samples at temperatures
below 1 K, this effect appears as a fast initial relaxation of temperature that is non-exponential. If calorimetry data
displaying such a feature are analyzed by conventional methods that are appropriate for data affected by a “lumped
τ2 effect” due to a contact resistance between the sample and the calorimeter, a systematic error is introduced in
the measured heat capacity. We show how this error can be eliminated by a data-analysis method recently proposed
by Takano and Muttalib, drawing an example from our experimental data of a magnetic insulator sample in a high
magnetic field.
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The relaxation calorimetry [1] measures the heat ca-
pacity Ctotal of the sample and addenda using the sim-
ple relation

Ctotal = κτ, (1)

where τ is the time constant of the exponential temper-
ature relaxation and κ is the thermal conductance of
the weak link. However, resistances other than that of
the weak link cause the temperature relaxation to de-
viate from a single-exponential behavior, complicating
the extraction of the heat capacity from the data. This
is particularly a problem at millikelvin temperatures,
where the contact resistance between the sample and
the sample platform of the calorimeter becomes non-
negligible. If the sample is non-metallic or made of com-
pressed powder, its internal resistance often presents
even more serious complications.

When the additional resistance is mainly due to
poor thermal contact between the sample and the
calorimeter, the temperature relaxation takes up a
double-exponential form [2,3]. The sample heat ca-
pacity C in this case can be correctly obtained [2,4]
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from the time constant τ1 and weight a1 of the slow
relaxation alone, if the data are taken after the plat-
form heater is turned on or off starting from thermal
equilibrium between the sample and the platform. A
convenient expression [5] to use for this purpose is

C = κa1τ1

(
1 − Cadd/κ

τ1

)2 /(
1 − a1Cadd/κ

τ1

)
, (2)

where the addenda heat capacity Cadd comes from the
sample platform including the heater, thermometer,
and 1/3 of the weak link [1,5]. An obvious but cumber-
some alternative is to fit the data to two exponentials,
from which the sample heat capacity is extracted [3,5].

If the additional resistance primarily comes from
the sample itself, then the temperature decay exhibits
a rapid initial relaxation that is non-exponential in
shape, followed by a single, slow exponential. This is
often called the distributed τ2 effect, a misleading term
inherited from the ac calorimetry [6], where it made
perfect sense. This effect has been discussed by Bach-
mann et al.[1], who pioneered the relaxation calorime-
try.

Recently, Takano and Muttalib [5] have given de-
tailed analysis of this effect. In the most general case,
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where both the internal resistance of the sample and
the contact resistance between the sample and the
calorimeter are significant, they have considered the
heat-flow model given in Fig. 1. Here κs is the thermal
conductances of the sample, and κ′the conductance of
the contact between the sample and the calorimeter.
The non-uniform temperature T (x) is that within the
sample, Tp the uniform temperature of the sample
platform, and Tr the temperature of the reservoir.

Starting from a thermal equilibrium between the
sample and the platform, the time evolution of Tp after
the platform heater is turned off is given by [5]

Tp(t) − Tr

Tp(0) − Tr
=

∞∑
n=1

an exp(−t/τn), (3)

where the time constant τn and weight an of each ex-
ponential term are given by

τn = C/(kn
2κs) (4)

and

an = 2αα′2{α2β2k6
n

+β
[
α′β(α′ + α) − 2α2(α′ + 1)

]
k4

n

+
[
α2(α′ + 1)2 + α′β(αα′ − 2α′ − 2α)

]
k2

n

+α′(αα′ + α′ + α)}−1.

(5)

Here kn are the roots of the eigenvalue equation

α

α′ (α
′ + 1 − βk2

n)kn sin kn = (1 − βk2
n) cos kn, (6)

which must be solved numerically, α ≡ κs /κ and α′ ≡
κ′ /κ are conductance ratios, and β ≡ Caddκs /(Cκ) .
Takano and Muttalib have further shown [5] that an
underestimate by up to 1−8

/
π2�19% can occur in the

sample heat capacity, if Eq. 2 or equivalent formulae
[2,4] are used for data affected by a sample resistance.
Based on conservation of energy alone and independent
of any heat-flow model, they have proposed that the
heat capacity should be extracted by combining a fit of
the slow late-time relaxation to an exponential with a
numerical integration of the residuals at the early time.

Figure 2 shows data of a magnetic insulator taken
with a novel calorimeter [7] at 0.65 K in a 6 T magnetic

Fig. 1. Heat-flow model for a relaxation calorimeter, with the

thermal conductance of the sample and the contact between

the sample and the sample platform explicitly included. See the

text for an explanation of the various elements of the model.
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Fig. 2. Temperature relaxation data of a 5.47 mg sample of

deuterated Ni(C5D14N2)2N3(PF6), taken at 0.65 K in a 6 T

magnetic field [8]. For clarity, only one out of every ten points

is shown. The lines are fits discussed in the text.

field, exhibiting a distributed τ2 effect [8]. The solid line
is a fit of a late part of the data to a single exponential,
and the broken line is a best fit of the entire data to a
double exponential. For the heat capacity of the sam-
ple, Eq. 2 gives 1.01 µJ/K, the double exponential fit
1.11 µJ/K, and the method proposed by Takano and
Muttalib 1.24 µJ/K. The difference between the first
and the third, correct value is exactly 19%, the maxi-
mum error predicted by Takano and Muttalib.
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