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Abstract

By using the Shastry inequality and infrared bounds based on reflection positivity, we prove the absence of
quadrupole ordering in the ground state of the spin-S isotropic Hamiltonian with bilinear −J and biquadratic −J

′

exchange interactions in the one dimensional system in the region J
′
> 2S2J, J

′
> 0.

Key words: ferro-quadrupole moment; ground state; one dimension; Shastry inequality; infrared bounds; reflection positivity

At finite temperature the absence of spontaneous
symmetry breaking (SSB) associated with dipole mo-
ment in one- and two-dimensional isotropic quantum
spin systems with short range interactions has been es-
tablished by the Mermin-Wagner theorem [1]. Its ex-
tension gives the proof of the absence of SSB associ-
ated with multipole moment in the isotropic multipole
interaction systems [2,3].

On the other hand, at zero temperature the proof of
the absence of dipole ordering (SSB or long range order
(LRO)) for the one dimensional (1D) isotropic Heisen-
berg antiferromagnet has been given by the Shastry in-
equality [4] and the infrared bounds based on reflection
positivity (RP) [5]. However, the absence of multipole
ordering in the ground state (GS) of 1D systems have
not been established yet.

In this paper we discuss the isotropic spin-S
(� = (S1, S2, S3)) Hamiltonian with bilinear and
biquadratic nearest-neighbor interactions:

HΛ =− J

S2

∑
〈x,y〉

�(x) · �(y)− J
′

S4

∑
〈x,y〉

(�(x) ·�(y))2,(1)
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on a 1D chain Λ with an even number of sites |Λ|
and periodic boundary condition in the region J

′
>

2S2J, J
′ ≥ 0, where the Hamiltonian satisfies RP [6]. In

the case of S = 1, the GS of this model on a square or a
simple cubic lattice is expected to be antiferromagnetic
in the region J < 0, J

′
> 0 and ferro-quadrupolar (FQ)

in J
′

> J > 0 [7]. In the case of S > 1, these phases
are believed to be stable in the considered region. In
the present paper we prove the absence of dipole and
quadrupole ordering in the GS of the 1D system.

First, we prove the absence of quadrupole order-
ing. Now we use the quadrupole operators Qq , q =
{20, 22, xy, yz, zx}, then Hamiltonian (1) can be writ-
ten as

HΛ =JD

∑
〈x,y〉

�(x) · �(y)−JQ

∑
〈x,y〉

∑
q

Qq(x)Qq(y),

where JD = −J/S2 + J
′
/(2S4), JQ = 2J

′
/(3S4) and

Q20 = [3S2
3 − S(S + 1)]/2, Q22 = (

√
3/2)(S2

1 − S2
2 ),

Qxy = (
√

3/2)(S1S2 + S2S1), Qyz = (
√

3/2)(S2S3 +
S3S2), Qzx = (

√
3/2)(S3S1 + S1S3).

In reference [4] Shastry derived the following inequal-
ity:

〈
{B†, B}

〉
≥

∣∣〈[A†, B
]〉∣∣2√

〈[[A†,H] , A]〉β (A†, A)
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× coth

(
β

2

√
〈[[A†,H] , A]〉

β (A†, A)

)
,

where the Duhamel-two point function (A†, A) is de-

fined by Z−1
∫ 1

0
Tr(e−tβHA†e−(1−t)βHA)dt with par-

tition function Z, and inverse temperature β. Setting
the Fourier transformed operators A = S3(k), B =

Qxy(k), and H = HQ
Λ = HΛ − h

√
|Λ|Q22(0), we have,

〈{
Q†

xy(k),Qxy(k)
}〉

hΛβ
=2 〈Qxy(−k)Qxy(k)〉hΛβ ,∣∣〈[S†

3(k),Qxy(k)
]〉

hΛβ

∣∣2 = 4
(
mQ

hΛβ

)2
,〈[[

S†
3(k),HQ

Λ

]
,S3(k)

]〉
hΛβ

= ChΛβEk + 4hmQ
hΛβ

with

ChΛβ = 2JD

∑
i�=3

〈Si(x)Si(y)〉hΛβ

+2JQ

(
4
∑

q=22,xy

〈Qq(x)Qq(y)〉hΛβ +
∑

q=yz,zx

〈Qq(x)Qq(y)〉hΛβ

)
,

mQ
hΛβ = |Λ|−1

∑
x∈Λ

〈Q22(x)〉hΛβ, and Ek = 1 − cos k.
Expectation values of X in the following cases
are denoted by limh→0limΛ→∞limβ→∞〈X〉hΛβ =
limh→0limΛ→∞〈X〉hΛ= limh→0〈X〉h = 〈X〉. An upper
bound on the Duhamel two-point function is given by

β
(
S†

3(k), S3(k)
) ≤ 1/(2Ek−π) (2)

in the region J
′

> 2S2J, J
′ ≥ 0, where HΛ satisfies

RP [5,6]. Since the uniform field term −h
√

|Λ|Q22(0)
does not invalidate RP and the derivation of inequality
(2) is independent of this field term, this upper bound
remains intact for HQ

Λ .
By using inequality (2), we have, in the limit β → ∞,

〈Qxy(−k)Qxy(k)〉hΛ≥
(
mQ

hΛ

)2

√
8

ChΛ

√
Ek−π

Ek + γQ
hΛh

with γQ
hΛ = 4mQ

hΛ/ChΛ. Summing both sides of this
inequality over k and dividing by |Λ|, we obtain,

〈
(Qxy(x))2

〉
hΛ

≥
(
mQ

hΛ

)2

|Λ|

√
8

ChΛ

∑
k

√
Ek−π

Ek + γQ
hΛh

.

Finally, taking Λ → ∞, we have,

〈
(Qxy(x))2

〉
h
≥

(
mQ

h

)2

√
8

Ch

1

2π

π∫
−π

√
Ek−π

Ek + γQ
h h

dk

=
2
(
mQ

h

)2

π

√
8

Ch
tanh−1

(√
2

2 + γQ
h h

)
.

Taking h → 0, we see that the right hand side diverges,
but the left hand side takes a finite value. Therefore,

mQ must vanish. Following the argument in reference
[9], we see that the absence of SSB associated with FQ
moment assures the absence of FQ-LRO in the GS.

On the other hand, in the region J
′ ≥ 2S2J, J

′
> 0,

an upper bound on the Fourier transformed two-point
quadrupole correlation function for k �= 0 (i.e., infrared
bound) in finite volume GS can be constructed [5,6].
Thus, quadrupole-LRO which would be realized in the
infinite volume GS is a ferro-type.

We have proven the absence of quadrupole-LRO
in the region J

′
> 2S2J, J

′
> 0 (strictly speaking,

the absence of SSB associated with FQ-moment and
quadrupole-LRO for k �= 0).

Next, we prove the absence of dipole ordering. In
this case, we choose A = S3(k), B = S2(k + π),H =

HΛ−h
√

|Λ|S1(π). Then we have, in the infinite volume
GS,

〈
(S2(x))2

〉
h
≥

(
mD

h

)2

π

√
2

Ch
tanh−1

(√
2

2 + γD
h h

)

with mD
h =limΛ→∞limβ→∞|Λ|−1

∑
x∈Λ

(−1)x〈S1(x)〉hΛβ

and γD
h = mD

h /CD
h (here we should note that the stag-

gered field term also does not invalidate RP). Following
the same arguments as for the quadrupole case, this
inequality leads to mD = 0. From the infrared bound
on the Fourier transformed dipole correlation function
for k �= π in the region J

′
> 2S2J, J

′ ≥ 0 [5,6], dipole-
LRO for k �= π is absent in infinite volume GS. Thus we
reach similar conclusion to the one for the quadrupole
case in J

′
> 2S2J, J

′ ≥ 0 [9].
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