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Abstract

Magnetic field dependence of the Direct (DMA) and the Magnetically Modulated (MMMA) Microwave Absorption
of a number of Y-, Bi- and Tl- based high-temperature superconductors were measured at 4.2 K and 77 K by X-band
microwave spectrometer. Correlation between value of the Low Field Maximum (LFM) of the absorption and the
inter-grain critical currents of Josephson junctions was found. Results were analyzed and compared to theoretical
models of microwave absorption available in the literature yielding good agreement.
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1. Introduction

The MMMA in superconducting state of high–
temperature superconductors (HTS)was observed in
very low applied magnetic field with the so-called LFM
in magnetic field of a few mT due to existence of natu-
ral inter-grain Josephson junctions in those systems [1–
10]. The microwave absorption was measured mostly
by the standard microwave spectrometers yielding the
record of the first derivative of the absorption as a
function of magnetic field [1–3,5]. Only a few results of
measurements of DMA without applying of the mod-
ulation field were presented up to now [5–7] because
intensity of the effect is very small. However, the com-
parison of the DMA results with theoretical relations
is more rational because the MMMA signal contains
also contribution coming from the modulation field.

A few theoretical models were proposed to explain
the phenomenon. They assume that Josephson junc-
tions form the rf- or dc-SQUID or Resistively Shunted
Josephson Junctions (RSJJ) system which absorbs the
microwave power [7,9,10]. Our motivation was to mea-

sure both MMMA and DMA as a function of magnetic
field and temperature because DMA may be directly
compared to the available theoretical models.

2. Experimental results and their analysis

The samples of YBa2Cu3O7−δ were prepared by the
standard procedure and the chemical sol-gel method
[11]. The samples of Bi1.85Pb0.35Sr1.9Ca2.05Cu3O∼10

(Bi(2223)), Tl0.6Pb0.5Sr1.8Ba0.2CaCu3O∼10 (Tl(1223)),
and series of Tl(1223) with Bi, F and U, were syn-
thetized by various methods (standard mixed oxide,
co-precipitation and gel methods) [12].

Superconducting transition temperature Tc as well
as the intergrain critical current densities JcJ were de-
termined from ac-susceptibility measurements in our
previous paper [13]. The MMMA and DMA were mea-
sured by X-band (9.5 GHz) spectrometer at tempera-
tures 4.2 K, 66 K and 77 K and in magnetic field from
zero to 1 T (see Fig. 1). The special microwave bridge
was build up to measure the very low DMA signal [8].
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Fig. 1. Typical DMA signal and its numerical derivative (upper

panel) and MMMA signal (lower panel) at 77 K.
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Fig. 2. Correlations between BLFM and JcJ at 77 K. The

sintering temperatures of sol-gel samples, the 2% Ag and 32%

Ag for Y-Ag composites and 1, 2 and 3 standard Y- samples

are indicated.

The virgin curve of DMA was smoothed to com-
pute the derivation and to compare it to the MMMA.
BLFM,DMA and BLFM,MMMA are the values of mag-
netic field at which the characteristic LFM of DMA
and MMMA appear, respectively. The values of BLFM

were chosen as a quantity well characterizing the mi-
crowave absorption processes. The BLFM,MMMA and
BLFM,DMA as a function of JcJ at 77 K show linear
correlations (see Fig. 2). The typical histeresis loops of
MMMA and the irreversibility fields, BirrJ , vs maxi-
mum swept field exhibiting two-step behavior (see Fig.
3)were ascribed to a two step mechanism of microwave
absorption; first in the system of week Josephson junc-
tions and next onto the grain surface [8].
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Fig. 3. The irreversibility field as a function of maximum ap-

plied field at 77 K for YBa2Cu3O7−δ sol–gel specimens. Insert:

Hysteresis loops of MMMA for YBa2Cu3O7−δ 965◦C at 77 K.

Three theoretical models: RSJJ [10], rf-SQUID and
dc-SQUID [9] were quantitatively compared with ex-
perimental data of virgin curve of DMA. The best
agreement was achieved for the RSJJ model [8].

3. Conclusions

The intergrain microstructure and critical currents
determine the microwave absorption of HTS. The plot
of BLFM vs JcJ at 77 K shows linear dependence
(cf. Fig. 2). The RSJJ model describes the microwave
absorption of HTS in sufficiently good way.
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