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Abstract

The Mott metal-insulator transition in the multi-band Hubbard model in infinite dimensions is studied by using the
linearized dynamical mean-field theory. The critical interaction U, is obtained analytically. For the symmetric case
and for orbital degeneracy M we find U. = (4M + 2)+/L2 where Lo is the second moment of the non-interacting
density of states. We also derive an analytical expression for the discontinuity of the chemical potential = p(n) at
the filling n = M for U > U.. The findings are in good agreement with numerical results obtained from the exact

diagonalization method.
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The Mott metal-insulator transition (MIT) driven
by electron correlations has received intensive experi-
mental and theoretical attention. It is observed in var-
ious transition-metal oxides [1] as well as in fullerenes
[2]. The minimal model to describe the Mott MIT is
the single-band Hubbard model. However, a consistent
description of the above mentioned systems certainly
requires more realistic models including orbital degrees
of freedom.

Theoretical advances in the past decade — mainly
due to the development of the dynamical mean-field
theory (DMFT) [3,4] — have led to an increased under-
standing of multi-orbital Hubbard models [5-13]. Nev-
ertheless, a number of questions still need to be clar-
ified. Even within the DMFT reliable results for the
T = 0 Mott MIT in multi-band models are still miss-
ing. Furthermore, results for the M-dependence of the
critical U seem controversial, i.e. both a oc /M [11]
and a o< M [5,8,12] dependence have been reported in
the literature. To clarify these issues, a simple but reli-
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able method is needed — such as the linearized DMFT
for which we present an extension to the multi-orbital
case in this paper.

The linearized DMFT (L-DMFT) [14] maps the lat-
tice problem onto an Anderson impurity model with
a single bath site only by considering a simplified self-
consistency condition just at the critical point. This al-
lows for extremely fast numerical calculations or even
analytical results to estimate the critical parameters.
The L-DMFT has been tested extensively by compar-
ing with numerical results from the full DMFT. For
the standard Hubbard model [14,15] but also for differ-
ent thin-film and semi-infinite surface geometries [16]
as well as for the d-p model [17,18] a remarkable agree-
ment has been found. For quantitative estimates, er-
rors of the order of a few per cent have to be tolerated.
We can thus expect the L-DMFT to be a fast but reli-
able tool for multi-band systems as well.

Here we consider a multi-band Hubbard model with-
out exchange Coulomb interaction [19]:
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where i is a site index and o =T, |. The different or-
bitals labeled by o = 1,...,M are considered to be
equivalent, M is the orbital degeneracy.

In the limit of infinite dimensions, the self-energy be-
comes local, and the local Green’s function is given by
the impurity Green’s function of an effective Anderson
impurity model,
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In the model eq.(2), the hybridization function A(w) =
>, Vi/(w — ex) includes the effects of the interaction
at all the sites except for the impurity site and is de-
termined self-consistently so as to satisfy the DMFT
self-consistency equation [4].

The L-DMFT assumes that the MIT is characterized
by a vanishing weight of a low-energy quasi-particle
resonance. Close to the MIT, the quasi-particle peak
is approximated by a single pole at the Fermi energy.
Correspondingly, the hybridization function is a one-
pole function A(w) = VTQ This effectively represents
an approximate mapping of the model (1) onto an An-
derson model (2) withng = 2,V = V=2, €c = €x=2 =0
and €5 = —pu. The DMFT self-consistency equation is
simply written by V2 = 2L, [14]. Here L is the second
moment of the non-interacting density of states Ly =
fdw w?pO(w) = Z]. t?j. The quasi-particle weight z
can be calculated from the impurity spectral function
of the two-site Anderson model and is given by z =
2(V,yee, e, U, M) = V2 F(u,U, M) +0O(V*). Using the
standard (Brillouin-Wigner) degenerate perturbation

theory we find F(u, U, M) = %( ]\f\I/IU+—1p, + H_(]\]y_l)U)Q +

( MII}/I_M + H_(]\]/\Idtll)U)Q. Hence, we obtain
LoF(u,U, M) =1 (3)

as a condition for the MIT. This depends on the filling
n=1,...,2M — 1 through the chemical potential .
For U < U, and half-filling n = M [19] in the sym-
metric model, the chemical potential is fixed to yu =
(M — %)U due to particle-hole symmetry. Substituting
this into eq.(3), we obtain for the critical interaction

Ue(M) = (4M + 2)VLs . (4)

For U > U,, the system is a Mott insulator at n = M.
As a function of the filling the chemical potential shows
ajump Ay = p4+ — p—, where p+ is obtained by solving
eq.(3) for U > U, [15]. Ap thus obtained is

AM(U,M):U(B—\/32—1—1—1/u2)%, (5)

where B=1+1/(2(2M +1)*u?) and u = U/U..

We have also calculated Ap numerically by using the
NRG method for M =1 and the ED method for M =
1, 2. The analytical results of the L-DMFT eqs.(4) and
(5) agree very well with the numerical results both for
M =1[15] and M = 2 [20].

Remarkably, our findings show that U.(M) depends
linearly on M. This is in agreement with previous re-
sults from the Gutzwiller method [5] and slave boson
calculations [8]. There have been reports on a /M
dependence as well [11], a result which has not been
reproduced by other methods. The quantum Monte-
Carlo calculations of Han et al. [10], for instance, are
not conclusive, in particular due to the fairly large T
used in the calculations.
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