Scattering phase approach for energy spectrum in quantum dots
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Abstract

We present a semiclassical approach to evaluate quantum energy levels in asymmetrical quantum dots and wells,
where analytical solutions for Schrédinger equation are not possible. In spatial regions where the potential profile is
steep, the wave function is locally solved and gives rise to a momentum-dependent phase correction ¢ (k) as shown
in the figure. For smooth profiles, the usual WKB approximation works. Combining scattering phases accumulated
in both steep and smooth regions, we arrive at a generalized EBK quantization rule that can be solved algebraically
to obtain the energy levels. We present several examples in which this semiclassical approximation works very well,

even for the low-lying excitations.
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1. Introduction

The energy spectrum of a confined system can be
obtained by solving the Schrodinger equation directly.
But, if the potential profile is smooth at the length
scale of the particle wavelength, the energy spectrum
can be obtained by the much easier semiclassical WKB
approximation.[1,2] However, in quantum dot systems,
we often encounter sharp confining potential at sam-
ple edges, leading to the breakdown of the conventional
semiclassical approximation. In this paper, we develop
a more general semiclassical approach which holds even
at the presence of sharp confining potentials. Our ap-
proach leads to the modified Einstein-Brillouin-Keller
(EBK) quantization integral,[3,2]

7{ \/2m[E =V (z)]dz = 2nm + ¢s(E), (1)

where ¢4(F) is the energy-dependent scattering
phase[4] due to collision with sharp confining potential
at the boundaries. The WKB approximation is the
special case where the scattering phase becomes an
energy-independent constant ¢s(E) = 7. In the next
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section, we show how to evaluate the scattering phase
for general confining potentials.

2. Scattering Phase due to Potential

Consider a particle moving under the influence of a
smooth potential V' (z) and a sharp confining potential
V.(x) on the left-hand side,

Ve(z) = ©(=2)[Vo + Vi =], (2)

where Vo = k&/2m is the potential height and Vi =
k% /2m is the slope. The scattering due to Vz(x) can be
solved exactly and the eigenstates are

[9) = [k) + e~ — k). 3)

The scattering phase ¢s(k) is apparently energy-
dependent as shown in Figure 1. For the hard-wall
potential (k/ko = k/k1 = 0), the scattering phase is 7,
while for smooth potential (k/ko < 1,k/k1 > 1)the
phase becomes /2 as in the WKB approximation.

The confining potential can be viewed as depletion of
Hilbert space and the completeness of the eigenstates
in Eq. 3 implies that
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Fig. 1. Scattering phase for different potential height
Vo = kS/Qm and slop Vi = k$/2m.
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Following the standard derivation of the path-integral
formalism, the modified completeness identity in Eq. 4
changes the single-particle Green’s function. In the
semiclassical limit, it is described by the modified Van
Vleck’s formulal[5,6]

3" VG explids — i, (5)

G(r,r';t) ~
(r,r50) V21

where the summation is over all possible classical tra-
jectories with end points 7(¢) = r and r(0) = r’. The
action along the trajectory is A; with quadratic fluctu-
ations Cy. The scattering phase ¢ = 0 if the classical
trajectory is not reflected by V.(z) while ¢¢ = 7 (k) if
the trajectory is reflected.

The most powerful use of Van Vleck’s formula is that
it leads to the EBK quantization rule in the semiclassi-
cal limit. By setting » = 7’ in the Green’s function and
integrating over all possible r, we obtain the quantum
partition function Z(t) =) exp[—iE,t]. The energy
levels are then identified as singularities of Z(w) in the
frequency space. Within the stationary phase approxi-
mation, it can be shown[3] that the total Berry phase,
fpdq — ¢s, is quantized in units of 27 that leads to
the modified quantization rule in Eq. 1. It is interest-
ing that the sharp confining potential V.(z)only gives
rise to an energy-dependent scattering phase and the
semiclassical approximation still works as long as the
potential V (z) between turning points is smooth.

3. Simple Applications

We apply the modified EBK quantization rule to a
finite potential well of length L and with height Vo =
k3/2m. After some algebra, the scattering phase is

shown to be ¢(k) = 2cos™[(k/ko)? — 1]. The quan-
tized energy E, = k2 /2m satisfies

2kn L = 2n7 + ¢(kn). (6)

Quite surprisingly, the spectrum obtained by the semi-
classical approach is identical to the exact solution.

Another example is the three-dimensional hemi-
spherical quantum dot. After separation of variable,
the system can be described by an effective one-
dimensional potential V'(r) = I(I + 1)/2mr? for r < a
and V(r) = oo for r > a. The scattering phase ap-
proach gives the approximate spectrum

2 ! 3 ?
By = Gy n + 3 + 1 s (7)

where I’ = /(I + 1). This result is in excellent agree-
ment with the exact solution j;(v/2mFE,a) = 0 and
becomes identical in the large n limit as expected.

The semiclassical approach developed here can be
readily applied to higher dimensions or more compli-
cated systems such as Andreev reflection in supercon-
ducting junctions. The excellent agreement with the
exact solutions in previous examples shows that the
sharp confining potential does not kill the semiclassical
approach, but only gives rise to a nontrivial scattering
phase correction.
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