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Abstract

The granular HTS is treated here as a S-N mixture. Experimental data are used to determine the percolation
threshold f0 (the volume fraction of superconducting grains at zero resistance) and fp (corresponding to the
appearance of the first spanning superconducting cluster). The latter consists of percolating channels, each carrying
the Josephson critical current Ich. We demonstrate that, knowing f0 and fp as well as the morphology and orientation
of the grains, one can derive realistic estimates of Ich. This is realized by assuming a parallel resistive combination,
one resistor being the spanning superconducting cluster, the other the nonspanning network. The former is treated
as a percolation problem while the later is described within the effective-medium theory.
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In a S-N mixture we define the ”zero-resistance” frac-
tion of the superconducting volume, f0 = f(T0), by the
condition ρ(T0) = 0, and the percolation threshold fp

that manifests the appearance of the first spanning su-
perconducting cluster, the latter consisting of percolat-
ing channels [1]. Let n be their density in the direction
of the current. Each channel can carry the Josephson
critical current Ich (’ch’ means ’channel’) without de-
stroying superconductivity in the weak links between
grains. Ich depends on the direction of the current and
on temperature. The maximal superconducting cur-
rent that the spanning cluster can withstand is Icl =
nSIch, where ’cl’ means ’cluster’ and S is the cross sec-
tion of the sample. Obviously nS is the total number of
the channels that cross the sample. Zero resistance is
achieved at f = f0 ≡ f(T0) when the spanning cluster
carries the total transport current: Icl(T0) = I. Here f0

is a function of I and f0(I) ≥ fp, where the equality is
reached at very weak transport currents I ∼ Ich. The
latter condition can be hardly realized experimentally,
since Ich � 0.1-10 µA, as we show below.
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Let us find both fp and f0 for our sample. The ex-
act results obtained using the percolation theory (see
Refs. [1–4] as reviews) are fcont

p ≈ 0.17 for continuum
and f latt

p ≈ 0.20 for dense lattices. These results were
recently corroborated experimentally [5]. We accept
fp = f cont

p ≈ 0.17 for our sample. Since fp = f(Tp),
we get Tp ≈ 80 K.

At f > fp ≈ 0.17 the S-N mixture consists of the
parallely connected spanning superconducting cluster
and the non-spanning network. The voltage across the
spanning cluster is zero for currents smaller than Icl.
At higher currents the weak links become normal and
the voltage drop rises steeply. The non-spanning part
has a smooth V-I characteristic. Therefore we can as-
sume that the spanning cluster carries a current that
slightly exceeds Icl in order to keep voltages across the
two parallel resistors equal. Correspondingly, the non-
spanning part carries slightly less than I − Icl. In or-
der to find Icl, let us notice that n ∝ η−2, where η ∝
(f − fp)

−ν is the correlation length of the percolation
problem and ν ≈ 0.9 [1]. Thus we get:

nab = γ(f − fp)
2ν/sab, (I ‖ ab) (1)
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nc = γ(f − fp)
2ν/sc, (I ‖ c) (2)

where γ � 1 and sab, sc are the mean cross sections
of the grain for I ‖ ab and I ‖ c, respectively. Note
that nab/nc = m ≈ 100. Zero resistance is achieved at
j = nIch. Using this condition and Eqs. (1-2), we find
two similar equations:

(
f(Tab

0 ) − fp

)2ν ≈ Iab
g

Iab
ch(Tab

0 )
, (3)

(f(T c
0 ) − fp)

2ν ≈ Ic
g

Ic
ch(T c

0 )
, (4)

which determine Tab
0 and Tc

0 , and, in turn, fab
0 =

f(Tab
0 ) and fc

0 = f(T c
0 ). Here Ig = js is the mean

transport current that crosses a single grain, j = I/S
is the current density and s stands for either sab or sc

depending on the current direction. Note that j is con-
stant in our experiment, therefore Ic

g/Iab
g = m � 100.

As one can see from Fig. 1, even weak fields H ≤
750 Oe affect the resistive transition appreciably. The
excess resistivity, ∆ρ, arising due to the magnetic field
is apparently almost independent on the direction of
the field with respect to the grain orientation or to
the direction of the current. This confirms our asser-
tion that the field affects the intergrain point-like weak
links and that the resistivity associated with the vor-
tex motion is unimportant in our case.

The resistive transition becomes ”field-sensitive” be-
low certain temperature TH that can be estimated from
Fig. 1 as Tab

H ≈ 92 K for I ‖ ab and Tc
H ≈ 75 K for I ‖ c.

Above TH the resistivity is almost field independent.

Fig. 1. Resistivities for I ‖ ab (ρab) and for I ‖ c (ρc), normal-

ized by the corresponding value at T = 297 K.

This can be expected, noticing that the Josephson crit-
ical current Ich vanishes as T → Tonset, whereas Ig,
the grain bulk critical current, remains finite, so just
below Tonset we have Ich 
 Ig. In this situation the
magnetic field, that further suppresses Ich, has almost
no effect on ρ(T ). The latter becomes ”field-sensitive”
provided Ich � Ig. Correspondingly, the condition that
determines TH is

Iab
ch(Tab

H ) � Iab
g , Ic

ch(T c
H ) � Ic

g. (5)

Since Ic
g/Iab

g = m is of the order of the ratio of the
crossectional areas of the grains in the correspond-
ing directions (thus for BSCCO one gets m ≈ 100),
it is clear that T c

H should be considerably less than
Tab

H , as indeed observed experimentally. Moreover, us-
ing Eq. (5) one can obtain an estimate of Ich, specif-
ically Ich(92 K) ≈ 0.03 µA and Ich(75 K) ≈ 2 µA.
The fact that Tab

H > Tp, i.e., the effect of the magnetic
field on ρab becomes noticeable even in the absence of
the spanning cluster, does not contradict our approach.
Suppression of Ich results in appearance of additional
resistivity in the non-spanning part also, but the quan-
titative analysis of this effect is quite complex and will
be carried out elsewhere.

There are two problems regarding the applicability
of the effective medium approximation (EMA) in these
ceramics. First, the presence of finite Ich results in ad-
ditional resistivity not accounted for by EMA. Sec-
ond, the percolation of current via the spanning clus-
ter breaks the consistency of the EMA and requires
consideration of the two-resistor model. Thus under an
applied magnetic field of H = 750 Oe, we get two com-
peting effects: the appearance of additional resistivity
due to suppression of weak links that should worsen the
EMA fit, and a suppression of Icl that works in favor
of applicability of the EMA. The latter effect proves
to be decisive, since the spanning cluster is responsi-
ble for the very fast drop of ρab at T < Tp in the ab-
sence of the field. Therefore it is not surprising that at
H = 750 Oe we get a consistent EMA picture at all
T > T c

H ≈ 75 K, whereas at H = 0 the applicability of
the EMA is restricted by the condition T > Tp ≈ 80 K.
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