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Abstract

We discuss the origin of the superconductivity in a Hubbard model. For the superconductivity which is induced
by the Coulomb interaction U , it is important to investigate the wave number dependence of the quasi particle
interaction. Using the third order perturbation theory with respect to U , we treat the wave number dependence
induced by the spin fluctuation and the vertex correction. We investigate the pairing states for the various lattice
structures in the Hubbard model and we point out the important factors giving rise to the singlet and triplet
superconductivities.
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In the strongly correlated systems, the origin of the
superconductivity has been researched on the basis of
the spin fluctuation theory. However, the triplet super-
conductivity of the quasi two-dimensional ruthenate
[1] is recently studied with the new idea different from
a spin fluctuation mechanism. Adopting the third or-
der perturbation theory (TOPT) with respect to the
Coulomb interaction U , Nomura and Yamada [1] con-
clude that the p-wave pairing of Sr2RuO4 is promoted
by a wave number dependence of the third-order ver-
tex correction rather than the spin fluctuations.

This conclusion presents a question whether the ver-
tex correction is also generally important for the su-
perconductor in the two- and three-dimensional var-
ious lattice structures. This problem is interesting in
comparison with previous studies on the basis of the
spin fluctuations. Thus, we treat the wave number de-
pendence including both the spin fluctuations and the
vertex correction in the strong coupling theory and we
study the triplet and singlet superconductivities in the
various lattice structures. We investigate the dominant
pairing states for the two-dimensional square and the
three-dimensional simple cubic (SC), FCC and BCC
lattices structure. From these results, we find the im-
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portant factors for the origin in common with various
lattice structures.

We give the following formulation. The Hubbard
Hamiltonian is given by

H = −t1
∑

<i,j>,σ

c†i,σcj,σ + t2
∑

<i,k>,σ

c†i,σck,σ

+U
∑

i

ni,↑ni,↓, (1)

where σ is the spin index, 〈i, j〉 indicates tak-
ing summation over the nearest-neighbor sites and
〈i, k〉 over the next-nearest-neighbor sites. We ob-
tain the energy dispersion for the square, SC,
BCC and FCC lattices; Esquare

k =−2t1
∑2

l=1
coskl +

4t2cos(kx)cos(ky), Esc
k =−2t1

∑3

l=1
coskl + 4t2

∑
l<m

cos(kl)cos(km) , Ebcc
k = −8t1coskxcoskycoskz +

2t2
∑3

l=1
cos(2kl) and Efcc

k = −4t1
∑

l<m
cosklcoskm+

2t2
∑3

l=1
cos(2kl). (l,m = 1, 2, 3; x, y, z) We take

t1=1.0 and −0.5 < t2 < 0.5.
We obtain the bare Green’s function given by

G0(k, εn)= 1
iεn−(Ek−µ)

, where εn=πT (2n + 1) is the
Matsubara frequency and µ is the chemical potential.
The electron number density per spin n is given by
n= T

N
Σk,nG0(k, εn).
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The effective interactions for the singlet and triplet
states are given by TOPT. The effective interaction
is divided into two parts, VTOPT(q, k)=VRPA(q, k) +
VVertex(q, k). The RPA-like term VRPA includes the
term given by the Random Phase Approximation
(RPA) and VVertex is the vertex correction. The RPA-
like term reflects the nature of the spin fluctuations.
The vertex correction originates from other terms
except for the spin fluctuations. For the singlet and
triplet pairing states, the RPA-like part and the vertex
correction part are given respectively by

V Singlet
RPA (q, k) = U + U2χ0(q − k) + 2U3χ2

0(q − k), (2)

V Singlet
Vertex (q, k) = 2

T

N
U3[

∑

k′
G0(q − k + k′)

×(χ0(q + k′) − φ0(q + k′))G0(k
′)], (3)

V Triplet
RPA (q, k) = −U2χ0(q − k), (4)

V Triplet
Vertex (q, k) = 2

T

N
U3[

∑

k′
G0(q − k + k′)

×(χ0(q + k′) + φ0(q + k′))G0(k
′)], (5)

where k indicates k≡(k, ωn). The bare suscepti-
bility χ0(q) and φ0(q) are defined by χ0(q) =
− T

N

∑
k

G0(k)G0(q + k), φ0(q)=− T
N

∑
k

G0(k)G0(q −
k), respectively. Next, we obtain the linearized
Éliashberg equation at the transition temperature Tc.;
λΣ†

A(q)=− T
N

∑
k

V (q, k)|G0(k)|2Σ†
A(k). Σ†

A(k) is an
anomalous self energy and V (q, k) is given by (2 - 5).
The equation is an eigenvalue equation with an eigen-
value λ and an eigenvector Σ†

A. We solve the linearized

Éliashberg equation on the assumption that Σ†
A has the

pairing symmetries represented by p, d, f and g-wave
pairing symmetries. The most dominant pairing sym-
metry has the largest value of the eigenvalues among
the different pairing symmetries. Thus, we solve the
equation and determine the dominant state. We carry
out the calculation by taking 64×64×64 momentum
meshes and Nf=512 for Matsubara frequency.

We obtain the following results. In Fig. 1, we show
the superconducting phase diagrams determined by
the TOPT in the plane of the hopping integral t2 and
the density n and we show a most dominant pairing
state which has the largest value of eigenvalues λ. The
half-filling density corresponds to n = 0.5. From the
phase diagrams, we point out the main factors in com-
mon with the various lattice structures.

First, we mention the effects of the spin fluctuation
for the pairing state. Near the half-filling, the singlet
superconductivity is realized by the spin fluctuation,
such as the antiferromagnetic spin fluctuation. By the
ferromagnetic spin fluctuation, the p-wave pairing is
dominant in the case of the very low density for the
electron or the hole (n < 0.05 or n > 0.85). The results
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Fig. 1. The superconducting phase diagrams for the dominant

pairing symmetry for the various lattice structures. t2 and n

is the next-nearest-neighbor hopping integral and the electron

density, respectively. The half-filling corresponds to n=0.5.

for the p- and d-wave pairings owing to the spin fluc-
tuations agree with the results studied with the FLEX
approximation by Arita et al. [2]

Next, we detail that the triplet pairing is induced by
the vertex correction in the intermediate density far
from the half-filling (0.05 < n < 0.3). By adding the
vertex correction, the triplet pairing can realize in the
wide region of the density. The effect of the vertex cor-
rection is generally opposite to the effect of the RPA-
like term. When the vertex correction gives the ad-
vantage to the triplet pairing, the RPA-like term sup-
presses the triplet pairing. When the RPA-like term
reflecting the antiferromagnetic (ferromagnetic) spin
fluctuations induces the singlet (triplet) pairing state,
the vertex correction suppresses the pairing.

As the important consequence, finally, we point out
that a certain intermediate density far from the half-
filling is necessary for the triplet pairing induced by
the vertex correction in the square, SC, BCC and FCC
lattice structures. By the wave number dependence of
the quasi particle interaction on the basis of Fermi liq-
uid theory, it is possible to treat generally both the sin-
glet and triplet superconductivities. To make clear the
origin of superfluidity in 3He, it is necessary to study
not only the spin fluctuations but also the wave num-
ber dependence of the vertex correction. A part of two-
dimensional case of this study is given in the paper [3].
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