

On the low-temperature behavior of the longitudinal magnetic susceptibility of chromium oxide

Sergei S. Krotov ^{a,1}, Aleksei Lisniak ^a

^aDepartment of Physics, Moscow State University, 119992 Moscow, Russian Federation

Abstract

It is shown on the basis of phenomenological approach, that antiferromagnetic vector \mathbf{L} in the AFM phase of chromium oxide may be collinearly canted from the 3-fold axis even in the case of weak external magnetic field \mathbf{H} ; the finite (non-zero) magnitude of the longitudinal magnetic susceptibility in the low temperature region is also explained.

Key words: collinear cant; Cr_2O_3 ; longitudinal magnetic susceptibility

1. Introduction

Antiferromagnetic Cr_2O_3 ($T_N = 310\text{K}$) corresponds to the magnetic point symmetry group $\bar{3}'m'$ [1], where the prime denotes the time reversal transformation. According to experimental data [2], the longitudinal magnetic susceptibility $\chi_{||}$ in Cr_2O_3 does not tend to zero at low temperature, but reaches some finite value. Our aim was to give a phenomenological explanation of temperature dependence of $\chi_{||}$ using the non-equilibrium thermodynamic potential [3], which is introduced with regard to symmetry limitations.

2. Phenomenological approach

In the antiferromagnetic (AFM) phase the phenomenological description of Cr_2O_3 is based on the thermodynamic potential, which is the polynomial expansion in magnetization vector \mathbf{M} and the antiferromagnetic vector \mathbf{L} and its components, invariant under transformations of the paramagnetic symme-

try group [4] of Cr_2O_3 for the star $\{\mathbf{k} = 0\}$, that is $R(-3)c1'(\bar{3}m1')$. We expand the Gibbs potential G to the second order in \mathbf{M} , and to the sixth order in \mathbf{L} and its components [5]:

$$\begin{aligned} G = G_0 + & \frac{1}{2}A\mathbf{L}^2 + \frac{1}{2}B\mathbf{M}^2 + \frac{1}{2}D(\mathbf{LM})^2 + \frac{1}{2}D'\mathbf{L}^2\mathbf{M}^2 \\ & + \frac{1}{4}CL^4 + \frac{1}{6}IL^6 + \frac{1}{2}A'(L_x^2 + L_y^2) \\ & + \frac{1}{4}C'(L_x^2 + L_y^2)^2 + \frac{1}{6}I'(L_x^2 + L_y^2)^3 \\ & + \frac{1}{4}KL_z(3L_x^2L_y - L_y^3) \\ & + \frac{1}{6}K'L^2L_z(3L_x^2L_y - L_y^3) \\ & + \frac{1}{6}R_1(L_x^3 - 3L_xL_y^2)^2 \\ & + \frac{1}{6}R_2(3L_x^2L_y - L_y^3)^2 - (\mathbf{MH}), \end{aligned} \quad (1)$$

here z-axis is parallel to the 3-fold axis, and x-axis coincides with one of the two-fold axes.

We will further show that potential (1) allows the existence of phases with collinearly canted $\mathbf{L} = L\{\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta\}$ ($\theta \neq 0$). Let's consider the angle ϕ values when $\mathbf{H} \parallel Oz$. As the consequence of collinear cant of spins from the 3-fold axis the magnetic symmetry group of the chromium oxide in AFM

¹ Corresponding author. Address: Department of Physics, Moscow State University, 119992 Moscow, Russian Federation
E-mail: popov@plms.phys.msu.su

phase is either $2/m'$ ($\sin 3\phi \neq 0$) or $2'/m$ ($\sin 3\phi = 0$). On the other hand, it is known that in the spin-flop (SF) phase spins in the elementary cell of Cr_2O_3 lie along the two-fold axis [6,7], and the magnetic group corresponding to the spin-flop phase is $2'/m$. This means that the inequality

$$R_1 < \frac{-|K|}{L^2} + R_2 \quad (2)$$

is satisfied. Then it is reasonable to assume that in the AFM phase, of the minima of potential G corresponding to different values of ϕ , those are present in which $\sin 3\phi = 0$. Allowing for the equation $\sin 3\phi = 0$ in (1) we denote the part of G which depends on θ as G_θ . Constant K is renormalized to include K' , and we introduce, as usual [3],

$$\chi_\perp = \{B + D'L^2\}^{-1} \quad (3)$$

$$\chi_{||} = \{B + (D + D')L^2\}^{-1}. \quad (4)$$

Then

$$G_\theta = \frac{1}{2}(\chi_\perp - \chi_{||})H^2 \cos^2 \theta + \frac{A'}{2}L^2 \sin^2 \theta + \frac{C'}{4}L^4 \sin^4 \theta + \frac{I'}{6}L^6 \sin^6 \theta + \frac{R_1}{6}L^6 \sin^6 \theta \quad (5)$$

Minimising (5) with respect to θ we find that there may exist several phases corresponding to local minima of G_θ . Among them, for instance, are phases

$$\begin{aligned} G_\theta^1 &= \frac{1}{2}(\chi_\perp - \chi_{||})H^2, \quad \theta = 0; \\ G_\theta^2 &= \frac{A'}{2}L^2 + \frac{C'}{4}L^4 + \frac{I' + R_1}{6}L^6, \quad \theta = \pi/2 \text{ (SF)}; \\ G_\theta^{3'''} &= \frac{1}{2}(\chi_\perp - \chi_{||})H^2 \cos^2 \theta + \frac{A'}{2}L^2 \sin^2 \theta \\ &\quad - \left| \frac{C'}{4}L^4 \sin^4 \theta - \frac{1}{6}|I' + R_1|L^6 \sin^6 \theta \right|. \end{aligned} \quad (6)$$

In the phase $G_\theta^{3'''}$ the value of $(\sin^2 \theta)$ is defined as

$$\begin{aligned} \sin^2 \theta_{1,2} &= \left\{ -C' \pm \sqrt{C'^2 - 4(I' + R_1)(A' - \chi h^2)} \right\} \\ &\quad \times \left\{ 2(I' + R_1)L^2 \right\}^{-1}. \end{aligned} \quad (7)$$

Here $h = H/L$, $\chi = (\chi_\perp - \chi_{||})$. Phase $G_\theta^{3'''}$ can be present under following conditions on constants of (1):

$$\begin{aligned} 2|I' + R_1|L^2 &> |C'| + \sqrt{C'^2 + 4|I' + R_1|(A' - \chi h^2)}, \\ C' &< 0, \quad I' + R_1 < 0. \end{aligned} \quad (8)$$

As to which phase is realized depends on the magnitudes and signs of constants of the expression (1) for G . It is generally presumed that the terms of the expansion (1) decrease rapidly with the order of \mathbf{L} and that the inequalities

$$A'L^2 \gg C'L^4 \gg (I' + R_1)L^6 \quad (9)$$

are satisfied. But these conditions must be broken to make the realization of “canting mechanism” which is considered in this paper possible. Then phase $G_\theta^{3'''}$ may become more energetically advantageous than G_θ^1 , which leads to collinear cant of spins.

3. Conclusion

As we can see, in certain temperature and external magnetic field region the angle θ may not be equal to zero, and that is why the observed longitudinal magnetic susceptibility χ_z ($\mathbf{H} \parallel O_z$) differs from the true longitudinal magnetic susceptibility $\chi_{||}$, namely:

$$\chi_z = \chi_{||}\chi_\perp (B + [D' + D \sin^2 \theta]L^2). \quad (10)$$

This analysis shows that when one describes low-temperature effects in chromium oxide, the “standard” expansion to the second order in \mathbf{M} and \mathbf{L} vectors is not sufficient. From the microscopic point of view this means that one should take into account the anisotropy energy — $\mathbf{S}_R \Phi_{RR'} \mathbf{S}_{R'}$ [4], where $\Phi_{RR'}$ is proportional to the square of the spin-orbit coupling constant.

References

- [1] B.N. Brockhouse, J. Chem. Phys. **21** (1953) 961
- [2] S. Foner, Phys. Rev. **130** (1963) 183
- [3] A.S.Borovik-Romanov, *Lectures on low-temperature magnetism*, Novosibirsk, NGU, 1976 (in Russian)
- [4] E.F. Bertaut, Acta Cryst. **A24** (1968) 217
- [5] S.S.Krotov, A.V.Lisniak, Doklady AN **381** (2001) 193 (in Russian)
- [6] M.Fiebig , D. Fröhlich, R.-J. Thiele, Phys. Rev. B**54** (1996) R12681
- [7] Yu.F.Popov, A.M.Kadomtseva, A.K.Zvezdin et al., Pis'ma J. Exptl. Theor. Phys. **69** (1999) 302 (in Russian)