

Electron-Electron Interaction Effect on Conductivities in Cobalt Thin Films

Taro Yakabe^{a,1}, Yoshikazu Terai^a, Syuma Yasuzuka^b, Chieko Terakura^a, Taichi Terashima^a, Shinya Uji^a, Daisuke Fujita^a, Giyuu Kido^a

^a*National Institute for Materials Science, Sakura 3-13, Tsukuba, 305-0003, Japan*

^b*Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan*

Abstract

We have measured the temperature (T) dependence of the conductivity of cobalt films with various thickness (d). The conductivity shows $\ln T$ dependence for $d < 100\text{\AA}$, which is mainly caused by electron-electron interaction effect. The coefficient of the $\ln T$ dependence significantly decreases with decreasing thickness for $d < 50\text{\AA}$, where the conductivity approaches Mott limit. The results suggest that the scattering for $d < 50\text{\AA}$ is dominated by the inhomogeneity of the films such as grain boundaries.

Key words: electron-electron interaction, localization, percolation

1. Introduction

The quantum corrections to electrical conductivity in disordered metals and doped semiconductors have been extensively studied for the last two decades. In the inhomogeneous system the interplay between percolation and localization has been examined theoretically within the framework of the scaling theory of localization[1]. However the role of electron-electron interaction effect in percolating metallic films is still unexplored. This paper is devoted to a study of the quantum corrections in percolating cobalt films.

2. Experimental

The films were grown by an electron beam deposition of cobalt (99.99%+) onto thermally oxide silicon substrates at room temperature. The vacuum during evaporation was 10^{-6} Torr and the evaporation rate was $0.3\sim0.5\text{\AA/s}$. The film thickness (d) was measured

with a quartz-crystal thickness monitor mounted beside the sample holder. The samples were fabricated by an electron beam lithography and lift-off process. Each one was $200\mu\text{m}$ wide and $700\mu\text{m}$ long between voltage probes. The conductivity was measured at various temperatures (T).

3. Results and Discussion

Figure 1 shows the temperature dependence of the conductivity in the film for $d = 50\text{\AA}$ under magnetic fields (0, 4, 10T) perpendicular to the film. As T decreases, the conductivity has a maximum at $\sim 25\text{K}$ and then shows a logarithmic temperature dependence at lower temperatures. The $\ln T$ coefficient, *i.e.* the slope of the conductivity curves, is calculated to be 1.0 in units of $e^2/2\pi\hbar$, irrespective of the magnetic field strength. Both effects of weak localization and electron-electron interaction on the conductivity are known to provide the same $\ln T$ dependence for two-dimensional (2D) systems. However, no field dependence in the $\ln T$ behavior shows that the electron-electron interaction

¹ Corresponding author. E-mail: YAKABE.Taro@nims.go.jp

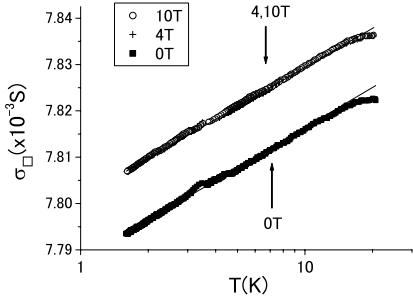


Fig. 1. Temperature dependence of the conductivity in the film with the thickness $d = 50\text{\AA}$ under magnetic fields (0, 4, 10T).

is the dominant mechanism. This is simply understood by the fact that the weak localization effect is suppressed by the large internal magnetic field in magnetic materials. We have measured the conductivity of the films with various thickness, and found that a similar $\ln T$ dependence is observed for $d < 100\text{\AA}$.

Figure 2 shows the thickness dependence of the $\ln T$ coefficient. The coefficient seems almost independent of the thickness above 50\AA , but a significant decrease is found below it. As d decreases, the resistivity shows steep increase for $d < 50\text{\AA}$ and the thickness dependence deviates from a curve expected from Fuchs-Sondeheimer theory [2]. This fact suggests that the thin films for $d < 50\text{\AA}$ are not homogeneous and that some additional scattering due to the inhomogeneity is present. Actually, we can observe fine granular structure, *i.e.* percolating structure of the film for $d = 50\text{\AA}$ by an atomic force microscope, whose size is of the order of 10nm. The phase coherence of the interacting two-electrons states is preserved within the characteristic length L_T given by $\sqrt{D\hbar/k_B T}$. The length L_T for cobalt is estimated to be 20nm at 10K, which is comparable to the size of the granular structure and much shorter than d . Therefore, this film is a well-defined 2D system and the $\ln T$ dependence can be consistently ascribed to the electron-electron interacting system.

For granular metals, the localization effect on the conductivity near the percolation threshold is theoretically obtained by Gefen *et al.*,

$$\sigma \sim \sigma(\xi_p) = \left(\frac{\xi_p}{\xi_l}\right)^{-t/\nu} \quad \sigma(\xi_l) \propto (d - d_c)^t \sigma(\xi_l) \quad (1)$$

where t and ν are critical exponents, ξ_l and ξ_p are the localization length and the percolation length, respectively[1]. The length ξ_p is proportional to $(d - d_c)^{-\nu}$, where d_c is percolation threshold. This theory predicts that both the conductivity and $\ln T$ coefficient decrease toward zero with decreasing d near d_c . This behavior is characterized by the critical exponent t which is theoretically obtained as $t \sim 1.3$ in the 2D percolation case

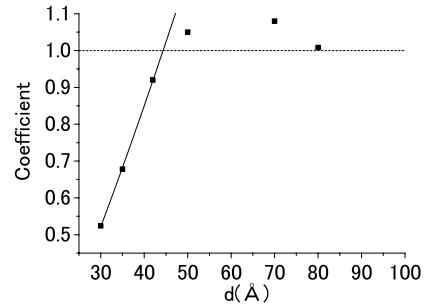


Fig. 2. Thickness dependence of the $\ln T$ coefficient in the units of $e^2/2\pi\hbar$.

[3]. For non-magnetic metal films, the critical behavior is already reported [4][5]. However, the result in Fig. 2 shows that a similar critical behavior appears even when the electron-electron interaction effect is dominant in the magnetic film. The solid line in Fig.2 is the fitted result with $t = 1.2$ and $d_c = 10\text{\AA}$. The critical exponent is close to the theoretical value in the case of the localization effect.

The resistivity of the film for $d = 50\text{\AA}$ is $64\mu\Omega\text{cm}$, which is close to Mooij limit($100\mu\Omega\text{cm}$) [6][7]. The large resistivity suggests that the electronic states in the films for $d < 50\text{\AA}$ could be close to the strong localization region. This is probably consistent with the above picture, *i.e.* the film thickness approaches the percolation threshold.

4. Summary

We observed the $\ln T$ dependence in the conductivity due to the electron-electron interaction for the cobalt thin films and found the critical behavior of the $\ln T$ coefficient towards the percolation threshold.

References

- [1] Y. Gefen, D. J. Thouless, and Y. Imry, Phys. Rev. B **28**, 6677 (1983).
- [2] R. Schad, P. Belien, G. Verbanck, V.V. Moshchalkov, and Y. Bruynsraede, J. Phys.: Cond. Matt. **10**, 6643 (1998).
- [3] D. Stauffer and A. Aharoy, "Introduction to Percolation Theory", Revised Second Edition, Taylor & Francis (1994).
- [4] A. Palevski and G. Deutscher, Phys. Rev. B **34** 431 (1986).
- [5] Y. Fehr, S. May-tal, and R. Rosenbaum, Phys. Rev. B **33** 6631 (1986).
- [6] C. C. Tsuei, Phys. Rev. Lett. **57** 1943 (1986).
- [7] S. B. Arnason, S. P. Herschfield, and A. F. Hebard, Phys. Rev. Lett. **81** 3936 (1998).