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Abstract

We report an analysis of the Anderson transition in an SU(2) model with chiral symmetry. Clear single parameter
scaling behaviour is observed. We estimate the critical exponent for the divergence of the localization length to be
ν = 2.72 ± .02 indicating that the transition belongs to the symplectic universality class.
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1. Introduction

It is thought that the critical phenomena of the An-
derson transition may be classified according to three
universality classes (orthogonal, unitary and symplec-
tic) depending on the symmetries of the Hamiltonian,
i.e. time reversal and spin rotation symmetries. A dif-
ferent value of the critical exponent ν describing the di-
vergence of the localization length is expected to char-
acterize each universality class.

In the absence of any diagonal disorder the SU(2)
model Hamiltonian may have chiral symmetry. This
depends on the boundary conditions and the number
of sites in each direction. Near the band center chiral
symmetry affects the localization of electrons e.g. an
even-odd system size dependence of the quasi-1d lo-
calization length is observed [1]. Here we investigate
whether or not chiral symmetry also affects the critical
exponent ν.

A system belongs to the symplectic universality class
if its Hamiltonian commutes with a time reversal oper-
ator T that satisfies T 2 = −1 e.g. systems with signif-
icant spin-orbit coupling. Systems in this universality
class exhibit an Anderson transition even in 2D. Re-
cently [2] we analysed the SU(2) model with an on-site
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random potential (diagonal disorder), which breaks
chiral symmetry, and estimated the critical exponent
ν = 2.73 ± .02.

Here we study the SU(2) model without an on-site
random potential. In spite of the fact that there is no
random potential, we find that there is an Anderson
transition at a critical energy Ec. Further this energy
Ec is far from the the band center and chiral symmetry
does not affect the observed critical phenomena.

2. Model and Method

The Hamiltonian of the SU(2) model describes non-
interacting electrons on a simple square lattice with
nearest neighbour SU(2) random hopping

H = −
∑

〈i,j〉,σ,σ′

(
eiαij cos βij eiγij sin βij

−e−iγij sin βij e−iαij cos βij

)
σσ′

c†iσcjσ′ (1)

where c†iσ(ciσ) denotes the creation (annihilation) op-
erator of an electron at the site i with spin σ. We dis-
tribute hopping matrices randomly and independently
with uniform probability on the group SU(2). This cor-
responds to α and γ uniformly distributed in the range
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Fig. 1. ln Λ vs Fermi energy E for system sizes

L = 11, 16,23, 32, 47,64. The solid lines are the fit.

[0, 2π), and β distributed in the range [0, π/2] accord-
ing to the probability density, P (β)dβ = sin(2β)dβ.

We calculate the localization length λ on a quasi-1d
strip whose width is L with the transfer matrix method
[3] and analyse the dependence of the re-normalized
localization length Λ = λ/L on the energy and the
width of the strip [4]. We also calculate the density of
states with the Green’s function iteration method [5].

In the course of our calculations we noticed a tech-
nical problem with the method described in [3]. When
fitting the numerical data it is important to have not
only an estimate of the localization length λ but also
an estimate δλ of how accurately λ has been estimated.
Otherwise a reliable fitting of the data is not possible.
We have found that the error δλ is over estimated by
the method of [3]. To overcome this problem we divide
the quasi-1d strip into blocks whose lengths are 103 and
calculate the quasi-1d localization length λi(i denotes
the block) in each block and accumulate λi. ¿From the
distribution of {λi} we estimate λ and δλ.

3. Results

We calculated Λ as a function of Fermi energy for
systems with widths L = 11, 16, 23, 32, 47 and 64. The
accuracy of the localization length data is 0.1%, with
the exceptions of L = 47, 64 where the accuracy is
0.2%. To achieve this accuracy systems of length of the
order of 107 to 108 are required. We impose the periodic
boundary conditions in the transverse direction. For
this choice of boundary condition systems with even L
have chiral symmetry, while those with odd L do not.
We fit even and odd data separately first and then in
combination. The results are displayed in Table 1. The
estimates of the critical parameters for all three fits
are in close coincidence and we conclude that chiral

Table 1

The number of data Nd and goodness of fit Q. The best fit

estimates of the critical energy Ec, ln Λc and the critical ex-

ponent ν with 95% confidence intervals. There are 7 fitting

parameters.

Nd Q Ec ln Λc ν

even 159 0.1 3.2531±.0002 0.613±.002 2.72±.02

odd 164 0.2 3.2531±.0002 0.613±.002 2.72±.03

both 323 0.1 3.2531±.0001 0.613±.001 2.72±.02
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Fig. 2. The DoS near the band edge for a system of

size 100 × 100. The vertical line shows the mobility edge

(Ec � 3.2531). (The imaginary part of the energy is 0.005.)

symmetry does not change the universality class. In
Fig. 1 we show the result for the combined even and odd
data. The lines cross at single point, indicating both
that corrections to scaling due to irrelevant variables
are negligible and also that an even-odd effect does not
exist. The estimates ν and lnΛc are consistent with
those in [2] for the symplectic universality class.

The density of states for a system of the size 100×100
averaged over 103 ensembles is shown in Fig.2. In the
critical region, the density of states changes slowly.
This behaviour is different from that of the random
magnetic flux U(1) model in 3D where the density of
states changes rapidly in the critical region [6]. This
might be the reason why we obtain clearer single pa-
rameter scaling here than in a study of the critical phe-
nomena of the U(1) model [7].
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