

Thermal Conductivity of $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$ under Applied Field

Yohei Kashiwada^a, Hiroyuki Fujishiro^{a,1}, Manabu Ikebe^a

^aFaculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan

Abstract

The thermal conductivity $\kappa(T)$ of $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$ ($0 \leq Z \leq 1.0$) has been measured under the applied field of up to 5 T. For $Z=0.3$ and 0.4, where the ferromagnetic metal (FM-M) state is competitive with the charge/orbital ordered (CO/OO) state, $\kappa(T)$ is enhanced and shows the hysteresis below the FM-M transition temperature T_c . The hysteresis of $\kappa(T)$ is wiped out and T_c increases rapidly with the increase of the applied fields. These $\kappa(T)$ behaviors originate from the stabilization of the FM-M state due to the rapid suppression of the CO/OO state.

Key words: $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$; thermal conductivity; ferromagnetic metal; charge/orbital order

1. Introduction

In the $\text{RE}_{1-X}\text{AE}_X\text{MnO}_3$ manganites (RE and AE being the trivalent rare-earth elements and divalent alkaline-earth ones, respectively), the electrical and magnetic properties are dependent on the hole concentration X (band filling) and the effective one-electron bandwidth W [1]. If the average radius of $\text{RE}_{1-X}\text{AE}_X$ ions decreases, W is reduced and the charge/orbital ordered (CO/OO) state becomes dominant over the ferromagnetic-metal (FM-M) phase. By alloying a larger AE ion at a constant X , $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$ undergoes the transition from the CO/OO insulating phase ($Z \leq 0.1$) to the FM-M phase ($Z \geq 0.4$) [2]. The phonon component of the thermal conductivity $\kappa(T)$ of $\text{La}_{1-X}\text{AE}_X\text{MnO}_3$ systems (AE=Ca, Sr) shows a characteristic enhancement below the FM-M transition temperature T_c [3,4]. The $\kappa(T)$ enhancement is also observed at the field-induced FM-M transition in $\text{Pr}_{0.65}\text{Ca}_{0.35}(\text{Mn}_{1-Z}\text{Co}_Z)\text{O}_3$ system [5]. In this paper, we report $\kappa(T)$ of the $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$ system under the applied fields.

2. Experimental

The single-phase $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35}\text{MnO}_3$ ($0 \leq Z \leq 1.0$) polycrystals were prepared by a solid-state reaction method. $\kappa(T)$ was measured by a steady-state heat flow method using an automated measuring apparatus [6]. The electrical resistivity $\rho(T)$ was measured by a four-probe method. The magnetization $M(T)$ was measured using a SQUID magnetometer under 0.5 T in the process of zero field cooling (ZFC).

3. Results and discussion

Figure 1(a) shows $M(T)$ as a function of temperature T . The CO/OO insulating phase is stable for $Z \leq 0.1$ and the FM-M phase is stable for $Z \geq 0.6$ at low temperatures. In the intermediate Z region ($0.2 \leq Z \leq 0.4$), the CO/OO insulating phase is competitive with the FM-M phase. Figures 1(b) and 1(c) show $\rho(T)$ of the $Z=0.3$ and 0.4 samples, respectively. For $Z=0.3$, the characteristic $\rho(T)$ upturn is observable below the CO/OO transition temperature $T_{CO}=210$ K and the FM-M state is induced below $T_c(\text{down})=70$ K and $T_c(\text{up})=100$ K in zero field. In the 2 T field, T_c increases rapidly with

¹ Corresponding author. E-mail: fujishiro@iwate-u.ac.jp

Fig. 1. (a) $M(T)$ for the $\text{Pr}_{0.65}(\text{Ca}_{1-Z}\text{Sr}_Z)_{0.35} \text{MnO}_3$ samples ($0.1 \leq Z \leq 0.6$). The electrical resistivity $\rho(T)$ of the (b) $Z=0.3$ and (c) 0.4 samples under the magnetic fields.

applied fields and the hysteretic $\rho(T)$ behavior is completely wiped out at 5 T. For $Z=0.4$, the hysteresis of $\rho(T)$ can be seen at 0 T, which is completely wiped out for $B \geq 2$ T. The hysteresis suggests the survival of the CO/OO order at 0 T.

Figures 2(a) and 2(b) show $\kappa(T)$ of the $Z=0.3$ and 0.4 samples under the applied fields. In both samples, $\kappa(T)$ is overwhelmingly due to phonons. In Fig.2(a), at 0 T on the cooling run, $\kappa(T)$ is enhanced below $T_{c(\text{down})}=70$ K and then reaches a maximum at 40 K and decreases with decreasing T . On the subsequent heating run, $\kappa(T)$ is drastically reduced at $T_{c(\text{up})}=90$ K and monotonously increases with the further increase of T . When the 2 T field is applied, the hysteretic $\kappa(T)$ behavior becomes broader and $T_{c(\text{down})}$ and $T_{c(\text{up})}$ rapidly increase to ~ 200 K. For the applied field of 5 T, $\kappa(T)$ does not show the hysteresis and T_c increases to 220 K. In Fig.2(b), the absolute values of $\kappa(T)$ are larger than those for $Z=0.3$ and the hysteresis is observable only at 0 T. These hysteretic $\kappa(T)$ behaviors are consistent with those of $\rho(T)$ as shown in Fig.1. In accord with $\rho(T)$ and $\kappa(T)$ behaviors, the thermal expansion $dL(T)/L$ of the $Z=0.3$ sample (not shown) shows a clear contraction below T_c accompanying a large hysteresis in 0 and 2 T.

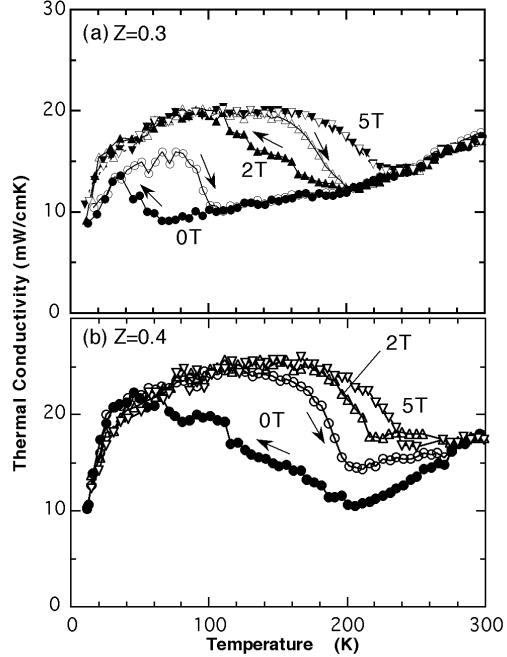


Fig. 2. Magnetic field dependence of $\kappa(T)$ for the (a) $Z=0.3$ and (b) $Z=0.4$ samples.

With increasing mobility of the charge carriers due to the metallic conduction, the local Jahn-Teller (JT) lattice distortion is relaxed in the FM-M phase as the observed contraction of dL/L indicates [4]. The $\kappa(T)$ enhancement below T_c is considered to originate from the reduced phonon scattering as a result of the relaxed local JT distortion. The disappearance of the hysteresis in $\kappa(T)$ suggests that the CO/OO phase give place to the FM-M phase in the applied field and the existence of the CO/OO phase brings about the rapid increase of T_c in the applied field.

References

- [1] A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, *Nature* **373** (1995) 407.
- [2] M.R. Lees, J. Barratt, G. Balakrishnan, D. McK. Paul, C. Ritter, *Phys. Rev. B* **58** (1998) 8694.
- [3] M. Ikebe, H. Fujishiro, Y. Konno, *J. Phys. Soc. Jpn.* **67** (1998) 1083.
- [4] H. Fujishiro, M. Ikebe, *Physics in Local Lattice Distortions*, ed. H. Ohyanagi and A. Bianconi (AIP, New York) (2001) p.433.
- [5] H. Fujishiro, S. Kanoh, H. Yamazaki, M. Ikebe, *J. Phys. Soc. Jpn.* **70** (2001) 2616.
- [6] M. Ikebe, H. Fujishiro, T. Naito, K. Noto, *J. Phys. Soc. Jpn.* **63** (1994) 3107.