

Specific Heat of CeMg_2Cu_9 with a Two-dimensional Ce Arrangement

Masakazu Ito^a, Koji Asada^a, Yuko Nakamori^b Hironobu Fujii^b Toshizo Fujita^a
Takashi Suzuki^{a,1}

^a*Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.*

^b*Faculty of Integrated Arts & Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.*

Abstract

We have carried out the specific heat measurements under pressures between 0 and 0.91 GPa on CeMg_2Cu_9 , in which the Ce atoms are a two-dimensional arrangement. A large peak is observed at $T_N = 2.5$ K for 0 GPa. T_N increases below 0.89 GPa, and turns to decrease with pressurization. The released magnetic entropy S_m below T_N is about 60% of $R\ln 2$ expected for the twofold spin degeneracy, suggesting Kondo-compensated moments are formed in the low temperature range.

Key words: CeMg_2Cu_9 ; specific heat; pressure effect; two dimensionality

In recent years, pressure effects on the intermetallic compounds with a two-dimensional arrangement of Ce atoms have been studied intensively [1,2], since interesting physical properties such as superconductivity emerge because the pressure controls the correlation between electrons. CeMg_2Cu_9 , which was firstly synthesized by one of the authors (Y. Nakamori), is a good candidate substance with two-dimensional structure, because the nearest neighbor distance along the c -axis between the Ce atoms is almost two-times larger than that in the c -plane [3]. In this paper, we report the results of the specific heat measurements under pressure up to 0.91 GPa on the CeMg_2Cu_9 .

Polycrystalline samples of CeMg_2Cu_9 and LaMg_2Cu_9 were prepared by melting stoichiometric amount of consistent metals at 1200°C under about 0.5 MPa Ar atmosphere in a Mo-crucible. Specific heat measurements were carried out by a conventional adiabatic heat-pulse method. A piston-cylinder Cu-Be clamp cell, which contains Apiezon-J oil as pressure-transmitting medium, was used to apply the pressures up to 1 GPa.

Figure 1(a) shows the temperature dependence of the specific heat divided by temperature C_P/T of CeMg_2Cu_9 at ambient pressure in $0.5 < T < 50$ K. A large peak which indicates an antiferromagnetic transition was observed at $T_N = 2.5$ K. The magnetic specific heat C_m was obtained by subtracting a lattice contribution C_l which is estimated from the C_P of the nonmagnetic LaMg_2Cu_9 , and is shown in Fig. 1(b). The contribution of C_l , for example, is about 0.3 and 90% around 2.5 and 30 K of the total, respectively. A Schottky-type anomaly C_{Sc} due to the effects of the excited crystal-field levels is found around 30 K. A Sommerfeld coefficient is roughly estimated to be $\gamma \geq 117$ mJ/K²mol from the value of C_m/T at $T = 5$ K. The hexagonal symmetry splits the sixfold degenerate state of Ce^{3+} with $J = 5/2$ into three Kramers doublets with the energy gap Δ_1 and Δ_2 from the ground state. The $C_{Sc}(T)$ is described by

$$C_{Sc}(T) = \frac{Nk_B}{T^2} \left[\frac{\Delta_1^2 e^{-\Delta_1/k_B T} + \Delta_2^2 e^{-\Delta_2/k_B T}}{k_B^2 Z(T)} - \left(\frac{\Delta_1 e^{-\Delta_1/k_B T} + \Delta_2 e^{-\Delta_2/k_B T}}{k_B Z(T)} \right)^2 \right], \quad (1)$$

¹ E-mail:tsuzuki@hiroshima-u.ac.jp

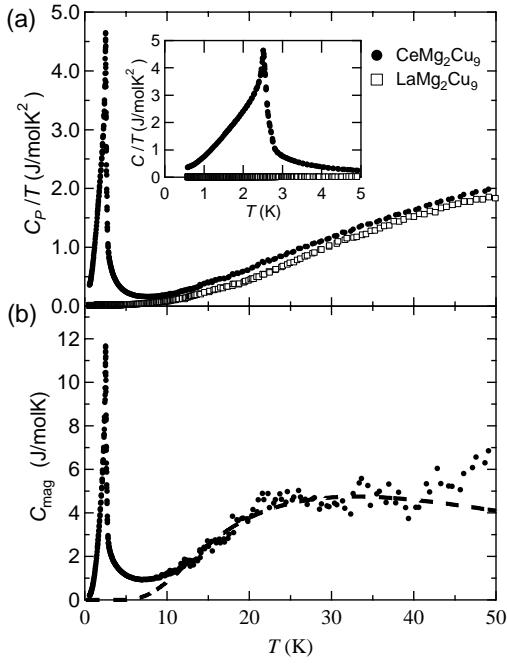


Fig. 1. (a) Temperature dependence of specific heat divided by temperature C_P/T for CeMg_2Cu_9 . C_P/T of nonmagnetic LaMg_2Cu_9 is also plotted. The inset shows that in the low temperature range. (b) Temperature dependence of the magnetic specific heat C_m . The solid line is fitting result using eq. (1).

with $Z(T) = 1 + \exp(-\Delta_1/k_B T) + \exp(-\Delta_2/k_B T)$ where N and k_B are Avogadro number and Boltzmann factor, respectively. We estimated the $\Delta_1/k_B = 58$ K and $\Delta_2/k_B = 136$ K from a fit with the equation (1). The fit is shown by the broken line in Fig. 1(b). The released magnetic entropy S_m below T_N obtained by integrating the C_m/T is 60% of the value expected for the twofold spin degeneracy $R\ln 2$, where R is the gas constant, suggesting Kondo-compensated ordered moments are formed in the low temperature range.

Figure. 2(a) shows the C_P/T as a function of T at various pressures up to 0.91 GPa in the range $0.5 < T < 4$ K. The Kondo-compensated ordered moments are still formed in the present pressure range, because the value of released S_m below T_N is not changed by pressure very much. T_N slightly increases up to 0.89 GPa, and turns to decrease with pressurization as shown in Fig. 2(b). The two-dimensional Ce arrangement might be play an important role for that.

Acknowledgements

This study was partially supported by a Grant-in-Aid both for Science Research and COE Research (

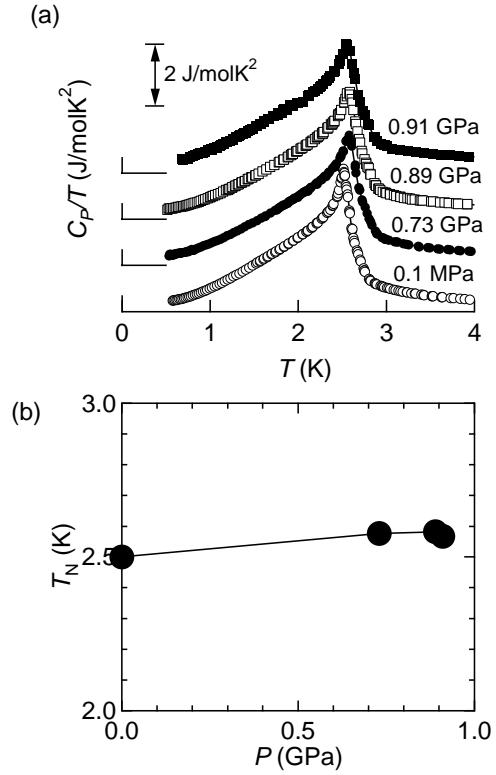


Fig. 2. (a) Temperature dependence of specific heat divided by temperature at applied pressure up to 0.91 GPa. (b) Pressure dependence of T_N . The solid line is a guide to the eye.

No.13CE2002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, J. D. Thompson, Phys. Rev. Lett. **84** (2000) 4986.
- [2] S. Kawasaki, T. Mito, G.-q. Zheng, C. Thessieu, Y. Kawasaki, K. Ishida, Y. Kitaoka, T. Muramatsu, T. C. Kobayashi, D. Aoki, S. Araki, Y. Haga, R. Settai, Y. Onuki, Phys. Rev. B. **65** (2002) 020504(R).
- [3] Y. Nakamori, M. Ito, H. Fukuda, T. Suzuki, H. Fujii, T. Fujita, Y. Kitano, Physica B **312-313** (2002) 235.