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Abstract

Earlier, a mutual transformation of transverse sound and electromagnetic waves in metals had been investigated in
details and found scientific and technical applications (see, e.g., the review [1]). Here we consider theoretically the
vibrations of electric potential generated by longitudinal elastic wave in bounded metal, and compare the results
with some experimental data measured in pure Ga at low temperatures.
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1. As it is well known [2], high-frequency ultra-
sound wave in metal is accompanied by macroscopic
electric field due to nonequilibrium – time-dependent
– distribution of charge carriers with energy spec-
trum modulated by elastic distortions, ε(p) →
ε(p) + Λik(p)uik(x, t) . Here ”high-frequency” (HF)
means that sound wavelenth is comparable or shorter
than electron mean free path: 2πs/ω < vF τ . Nev-
ertheless, even the hyper-sound frequencies are much
less than plasma frequency in a good metal. Therefore,
the metal stays electrically neutral with high accuracy,
and in longitudinal case we have to find an electric
field E (or its scalar potential ϕ ) from the neutrality
condition

〈ψ〉 ≡ 2(2πh̄)−3

∫
ψdSF /v = 0 (1)

and the kinetic equation

vx(ψ − eϕ)′ − i�ψ = −iωΛu′ (2)

where v is the electron velocity on Fermi surface SF ;
Λ , the xx-component of deformation potential ten-
sor Λik ; � ≡ ω + i/τ . Substantively, the effect can
only be measured on the sample surface; so we need
in correct solution of the boundary problem for Eqs.
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(1), (2), satisfying both the mechanical boundary con-
ditions and the same for nonequilibrium electrons dis-
tribution function ψ .

2. Let consider a semi-infinite sample, x ≥ 0 , and
– in adiabatic aproachment – a given elastic field in it,
with specified boundary values of displacements u0 and
distortions u′0 (here and below we omit the common
temporal factor exp(−iωt) ). For the sake of simplicity
we assume: a) an isotropic metal in which we may set
Λ → L(3 v2

x/v
2
F − 1) [2] and b) so-called ”specular”

boundary condition: ψ(0, vx > 0) = ψ(0, vx < 0) . The
latter – rather acceptable for ideal metal surface [3] –
enables us, after even continuation of functions ϕ(x)
and u(x) onto x < 0 semi-axis, to solve the Eqs. (1),
(2) directly by Fourier transform. Then the inversion
yields the potential distribution in the sample as a sum
of two terms quite differently depending on x :

eϕ0(x) = u′(x)L
s

vF

(
a

W (a)
+

3

a
− a

)

eϕ1(x) = iu0L
ω

vF

∞∫
1

4a2

a2 − z2

exp(i�xz/vF )zdz(
2z + ln z−1

z+1

)2
+ π2

(3)

a(ω) ≡ vF

s

ωτ

ωτ + i
(4)
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The first term is similar to the wave of elastic distor-
tions but the second one is a ”quasi-wave” arising due
to ballistic movement of free carriers. If ultrasound is
excited on the border x = 0 , the asymptotic form of
ϕ1 at a great distance from a border, x� |vF/�| , is

eϕ1(x) ≈ −4Lu0
ω

�x
ln−2

(
�x

vF

)
exp

(
i�x

vF

)
(5)

In collisionless limit (ωτ � 1) the quasi-wave part of
potential damps non-exponentially and runs into the
sample with near Fermi velocity; so the latter can be
measured in a pulse mode in samples of thickness d ∼
vF τ . We plan a special publication on the observation
of sound-generated electric quasi-waves, but in present
paper only surface potential of deformed metal is con-
sidered below.

3. If the sound beam comes from the projector placed
on opposite facet of a thick sample, Eqs. (3) at x = 0
give us the surface potential that can be measured (by
galvanic contact or capacitive coupling) as a voltage
between the distorted ”sound spot” on sample surface
and its distant points, free of deformations. At fixed
sound power the frequency dependence of the effect is
determined by a-depending factors in (3). The asymp-
totic forms can be written as

ϕ0(0) ≈ u′(x)L
s

vF
· 1

2
ln

1 + a

1 − a

ϕ1(0) ≈ iu0L
ω

vF
· 1

2
ln(1 − a2) (6)

in HF limit |a| � 1 , and at |a| 	 1 effect is very small:
these factors become ≈ (4/5) · a and ≈ −0.345 · a2
repectively.

The measurments have been carried out on pure
monocrystals of Ga, W and Al; in particular, in Ga
the parameter ωτ runned up to ωτ 
 5 at working fre-
quency 
 55MHz and minimal temperature T ∼ 1K
. Temperature dependences of amplitude and phase of
the signal arises from that of electron relaxation time,
τ . For Ga the τ(T ) dependence is known from semi-
empirical calculations [4], assuming mainly small-angle
scattering: (ωτ(T ))−1 ≈ 0.2 + 0.05T2 + 0.15T3 (T in
K). Using this result for our computation, we found a
qualitatively acceptable agreement between the theo-
retical and experimental curves in two different direc-
tions of the wave vector k (see Fig. 1).

4. The specular boundary condition used above sim-
plifies the problem vastly, but it is evidently too ideal
for real metal monocrystals. To clarify the effect of elec-
trons scattering by surface defects, we undertake the
calculation in opposite case of ”diffuse” reflection of
carriers by the sample surfase (ψ(0, vx > 0) = const).
It has been carried out by Wiener–Hopf technique with
asymptotic factorization of kernel. Here the problem
can be solved only separately in limit cases of free and
fixed sample border. The HF asimptotics are

Fig. 1. The temperature dependences of amplitude (a) and

phase (b) of surface electric potential generated by sound wave

moving along two crystallographic directions in Ga. Dash lines

- theoretical calculation by formulas (3), (4) (v/s = 200; f =

55 MHz).

eϕfix(0) ≈ u′
0L

s

vF
· 1

4
ln

1 − a

1 + a

eϕfree(0) ≈ iu0L
ω

vF
·
(

1

4
ln(1 − a2) + 3.317 · i

)
(7)

and at |a| 	 1 one can find ϕfix ∝ 2.234·a and ϕfree ∝
1.991 · ia2 – instead of formulas (6) and after them.
Thus we conclude that even strong surface scattering
can affect the magnitude of potential only numerically
(up at low frequencies and slightly down at HF), but
qualitatively it does not change the frequency and tem-
perature dependences in the phenomenon under con-
sideration. It can be used in comparative estimations
of the constants of deformation potential in different
metals and new ”synthetic” metal-like compounds.
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