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Abstract

To better understand the effect of external screening on the plasmon spectrum, the dynamic structure function of a
system of charged bosonic particles on a neutralizing background is calculated beyond the RPA by systematically
including three–excitation scattering processes. Attention is paid to the vanishing plasmon gap in the 3D spectrum
and the emergence of an acoustic mode when screening is present, and anomalous dispersion at low densities.
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1. Introduction

Plasmons are collective excitations observed in sys-
tems consisting of charged particles. For the electron
gas, a full calculation of the dynamic structure func-
tion S(k, ω), which provides a direct measure of the
energy transfer from an experimental probe to the sys-
tem, is a considerable task: besides the Coulomb in-
teraction, one should incorporate the Fermi statistics
and the periodic structure of the underlying ion lat-
tice (band structure) into the calculation. (For an ex-
perimental point of view, see, e.g. Ref. [1].) However,
the appearance of plasmons is not tied to statistics,
so a model system consisting of bosons, for which the
calculation is simpler, can also be used. Naturally, by
doing so one misses the electron–hole excitations and
plasmon damping. The ion background is commonly
treated within the jellium model (uniform neutralizing
background).

Besides the usual (Debye) screening inherent in
charged systems, there can be impurities or other ex-
ternal sources, such as gates in mesoscopic systems,
that can cause the Coulomb interaction to be screened.
This work examines the effect of this external screen-
ing on the plasmon spectrum.
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2. Variational theory

We study a system driven out of its optimized ground
state |Ψ0〉 by a time–dependent infinitesimal external
perturbation Uext(k, ω). This results in a change in
the one–particle density, proportional to the pertur-
bation within the linear response theory, δρ1(k, ω) =
ρ0χ(k, ω)Uext(k, ω). Here χ(k, ω) the density–density
response function: the fluctuation–dissipation theorem
states that S(k, ω) = − 1

π
�mχ(k, ω).

We see that to calculate S(k, ω) we need to establish
a relation between δρ1 and Uext. We start by writing
the trial state as

|Ψ(t)〉 =
1

N
e−iE0t/h̄e

1
2 δU |Ψ0〉 , (1)

where N is a normalization factor, E0 the ground–state
energy, and δU =

∑
i
δu1(ri; t) +

∑
i<j

δu2(ri, rj ; t) is
an excitation operator containing fluctuations in the
one– and two–particle correlations u1 and u2 due to
the perturbation, related to density fluctuations by the
BGY equations. [2]

The time evolution of the correlations is governed by
the least–action principle

δS = δ

t∫

t0

dt′
〈
Ψ(t′)

∣∣∣H − ih̄
∂

∂t′

∣∣∣ Ψ(t′)
〉

= 0 (2)
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Fig. 1. S(k, ω) in 3D at rs = 5 with σ = ∞ (Coulomb system)

and σ = 10 Bohr radii. The strength of S(k, ω) is indicated by

the gray scale: darker shade implies greater strength.

with the microscopic Hamiltonian

H = − h̄2

2m

N∑
i=1

[
∇2

i + Uext(ri; t)
]

+
∑
i<j

e−|ri−rj |/σ

|ri − rj | (3)

leading to two coupled equations of motion for u1 and
u2, from which S(k, ω) can eventually be solved. [3] In
Eq. (3) σ is the screening length.

We recover the random–phase approximation (RPA)
commonly used to interpret experimental data by in-
cluding only δu1(r; t). Introducing δu2 brings in three–
excitation processes allowing high–energy excitations
to decay, provided that energy and momentum are con-
served. This is missing in the RPA.

We emphasize that the theory contains the correct
summation of many–body diagrams so that Debye
screening is built into it from the onset: the screening
in the pair potential originates from an external source.

3. Results

Fig. 1 shows the calculated S(k, ω) at one represen-
tative density, rs = 5, for two values of σ in 3D. In
the figures, we see the plasmon mode (thin line) and
the two–excitation continuum (large gray area). As ex-
pected, for unscreened Coulomb potential the plasmon

Fig. 2. S(k,ω) in 3D at rs = 100 with σ = ∞ (Coulomb

system) showing anomalous plasmon dispersion.

spectrum exhibits a gap in the long–wavelength (low
momentum transfer k) limit: radiation with frequency
below this plasma frequency cannot propagate in the
medium. Additionally, we have shown [3] that the cur-
rent theory leads to a negative plasmon dispersion co-
efficient for bosons (the single–excitation curve bends
downwards) at all densities, in agreement with Monte
Carlo calculations [4], whereas RPA predicts the coeffi-
cient to be zero with positive higher–order corrections.

If the potential is screened, the gap vanishes and the
dispersion at low k becomes linear: the collective mode
turns acoustic. The stronger the screening, the more
the spectrum resembles that of a free particle.

Another important parameter considering the plas-
mon dispersion is the density of the system. At the
usual metallic densities in 3D, the plasmon mode is
well–defined (stays below the continuum) up to high k,
but at lower densities it can happen that the dispersion
becomes anomalous: the mode can decay into excita-
tions of lower energy. The main strength is still concen-
trated around this decaying mode. This is seen in Fig.
2, along with growing multi–excitation resonances.

In 2D, there is no gap in the spectrum of an un-
screened system, but the excitation energy vanishes
as

√
k. [3] There is no anomalous dispersion and the

collective mode is stable up to high k. Also here the
screening turns the mode acoustic. For strong enough
screening, the 3D and 2D spectra resemble each other.
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