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Abstract

We have investigated analytically the nature of the transition to the FFLO superfluid phases in the vicinity of
the tricritical point (TCP), where these phases begin to appear. Near the TCP, one can make an expansion of the
free energy up to sixth order, both in the order parameter amplitude and wavevector. Restricting ourselves to the
order parameter subspace (LO subspace) made of superposition of plane waves of the same wavelength, we obtain
first order transitions and a cos(q · r) form as the stablest FFLO phase. Moreover, going out of the LO subspace,
combining analytical and numerical studies, we show that the actual order parameter at the transition is very close
to the simple cos(q · r) form.
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1. Introduction

Almost four decades after the theoretical proposi-
tion of the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
phases [1], these phases still raise theoretical and ex-
perimental problems. For superconductors in the para-
magnetic limit, an external magnetic field induces a
difference 2µ̄ in the chemical potentials of the two pair-
ing species. For low temperatures, a transition occurs
from the normal state to a nonuniform (FFLO) super-
fluid state. Recently the FFLO state may have been
observed in quasi-two-dimensional organic compound
[2]. It should also be possible to observe FFLO phases
in ultracold fermionic gases where very low tempera-
tures have been obtained recently [3].

The exact nature of the FFLO phases are however
still unknown despite recent progress [5,6]. The sec-
ond order FFLO instability appears below the TCP,
Ttcp/Tc � 0.56, along a line in the (µ̄, T ) plane. It gives
rise to a spatial dependence in exp(iq · r) of the order
parameter but leaves a degeneracy with respect to the
direction of q.
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Following Houzet et al. [5], we make an expansion
of the generalized free energy with respect to the or-
der parameter amplitude and wavevector in the vicin-
ity of the TCP, where the FFLO phases begin to ap-
pear. In order to study how the q-orientation degener-
acy is lifted, we first restrict ourselves, in section 2, to
the order parameter subspace generated by the plane
waves exp(iq · r). This allows us to compute every-
thing analytically, thus to analyze the reasons that fa-
vor one phase compared to another. We find then that
the transition to the FFLO phase is first order and that
the stablest state is a one-dimensional texture ∆(r) ∼
cos(q · r). In section 3, we show that the actual min-
imum is only slightly modified when one releases the
subspace restriction.

2. The LO subspace

In the LO subspace, the order parameter is written
as ∆(r) =

∑
qi

∆i exp(iqi · r), with |qi| = q0. Since
the fourth order term in the order parameter ampli-
tude expansion can be negative, one has to go to sixth
order terms whereas fourth order is sufficient for the
wavevector expansion. With rescaled variables, the free
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energy reads :
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where A0(µ̄, T ) is a measure of the distance to the
spinodal line. Np∆̄p =

∫
|∆(r)|p and N2 is simply the

number of plane waves N in ∆(r). β is defined by
2βq2

0N4∆̄
4 = −

∫
∆2(∇∆∗)2 + c.c.. As we will see be-

low, the ∆̄4 term in (1) can be negative leading to a
first order transition. The stablest state minimizing F
requires therefore β to be minimum. Making use of :

∫

[∆̄2(∇∆̄∗)2−|∆̄|2|∇∆̄|2]+c.c.=

∫

[∆̄∇∆̄∗ − c.c.]2 ≤ 0

we can show that β ≥ −1
3

with the equality β = − 1
3

for
any real order parameter. As a consequence, the sta-
blest state has a real order parameter. This point can
be made clearer when one defines γ by γ

∫
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0
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where the sum is over {qi} such that q1 + q3 =
q2 + q4. β and γ can be shown to satisfy γ = 1 − β
thus we want γ to be maximized. By looking at the
first expression defining γ, it appears that one needs
strong spatial variation for the order parameter. This
can be achieved if ∆(r) has many nodes which favors
a real order parameter. The second expression defin-
ing γ shows it is favorable to take opposite vectors
such that (q̂1 − q̂2)

2 takes its maximum value. Sum
of opposite vectors give cos(q0.r) which is a real con-
tribution to the order parameter. We are thus led to
consider a real order parameter (β = −1

3 ) for which
the {qi} go by pairs {qi,−qi} in the LO subspace.
Minimizing the free energy F with respect to q2

0 gives
us q2

0 = 5
6 − 25N2

36N4
∆̄2 which implies :
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The second order FFLO transition simply corresponds
to A0 = 5/36. We also find a first order transition for
any real order parameter in our LO subspace. These
first order transition lines are given by :

A0 =
5

36
+

1

1458

1
N2N6

N2
4

− 125
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(3)

The highest critical temperature is given by the maxi-
mum A0 hence we minimize N2N6/N

2
4 with respect to

the amplitudes ∆i. We find it is favorable to decrease
the number of plane waves N and the maximum A0 is
given by a simple pair, i.e., ∆(r) ∼ cos(q · r). In that
case N2N6/N

2
4 = 10/9 and then A0 = 5/36+2.0210−3 .

3. Actual minimum

We now release our restriction of being in the LO
subspace but we still suppose that the order parameter
has a one-dimensional form. The free energy, as well
as A0, can still be written in the vicinity of the tricrit-
ical point as a universal function of the order param-
eter [7] and the functional derivative of these expres-
sions give us an ordinary nonlinear differential equation
(ONLDE) for the order parameter. Clearly our former
simple solution cos(q · r) cannot be a solution of this
ONLDE. We made an exploration of the solutions of
this ONLDE : two spatial frequencies q0 and q1, close to
the standard FFLO frequency, and their odd harmonic
combinations appeared. However, starting with a sin-
gle frequency, we find that it is not favorable to have
a frequency splitting. Therefore we have for the actual
minimum a single frequency q0 and its odd harmonics.
Numerically : ∆ ∼ cos(q ·r)−1.3310−2 cos(3q ·r) and
A0 = 5/36+2.710−3 which is not a significant increase
compared to the FFLO result but which is somewhat
different from our LO subspace result.

In conclusion, we have treated analytically the FFLO
phases in the vicinity of the TCP within a natural sub-
space generated by plane waves of same wavelength.
We have found a first order transition to a planar
cos(q · r) solution only slightly modified when the sub-
space restriction is released.
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