

Impurity-Induced Antiferromagnetic Order in Organic Spin-Peierls Compound *p*-CyDOV

Masaki Mito^{a,1}, Shuichi Tanaka^a, Tatsuya Kawai^a, Kazuyoshi Takeda^a,
Masanobu Yanagimoto^b, Kazuo Mukai^b

^aDepartment of Applied Quantum Physics, Kyushu University, Fukuoka 812-8581, Japan

^bDepartment of Chemistry, Ehime University, Matsuyama 790-8577, Japan

Abstract

The doping effect of magnetic impurity (*p*-CyDTV) on an organic radical spin-Peierls (SP) compound *p*-CyDOV ($T_{SP} = 15.0$ K) has been studied by heat capacity measurement of the doped crystals $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$. The antiferromagnetic transition was observed at $T_N = 0.135$, 0.290 and 0.164 K for the crystals with $x = 0$, 0.01 and 0.07, respectively. In the low doping region of $x = 0$ and 0.01, the antiferromagnetic order and the spin-Peierls state coexist, and at $x = 0.07$ the single phase of antiferromagnetic order is realized. The doping effect showed the similarity with that for an inorganic SP compound CuGeO_3 .

Key words: spin-Peierls state; magnetic impurity; antiferromagnetic order; *p*-CyDOV; CuGeO_3

1. Introduction

The spin-Peierls (SP) transition is a magnetic-to-nonmagnetic transition accompanying a structural change in the one-dimensional Heisenberg antiferromagnetic system with a spin one-half. Recently, in impurity-doped systems for an inorganic SP compound CuGeO_3 (SP transition temperature $T_{SP} = 14.2$ K), the antiferromagnetic (AF) order has been observed below 5 K [1–3], and especially the coexistence of SP state and AF order in the low-doping region has attracted much attention. The appearance of the AF order has been explained by considering that the disorder caused by the impurity induces the AF magnetic moment [4].

The study of the SP transition in organic compound is older than that in inorganic one [5]. However, the example of the impurity-doped organic SP compound has not been reported until recent years, and many phys-

ical studies for intrinsic SP state has been performed for the doped CuGeO_3 system [1–3].

Recently, a new organic SP compound *p*-CyDOV (3-(4-cyanophenyl)-1,5-dimethyl-6-oxoverdazyl; $T_{SP} = 15.0$ K) has been reported, and the doping effects have been studied for the *p*-CyDOV systems [6,7].

In this paper, the doping effect of magnetic impurity on *p*-CyDOV is investigated by the measurement of heat capacity.

2. Experiments

A series of *p*-CyDOV crystals doped with *p*-CyDTV ($(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$) was synthesized according to the method mentioned in ref.6. The molecular structures of *p*-CyDOV and *p*-CyDTV are similar to each other as shown in Fig. 1, and both the molecules have an unpaired electron in a molecule. The results of the magnetic measurements of $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$ have indicated that T_{SP} decreases with increasing x , and the SP transition is not observed for x

¹ Corresponding author. Present address: Department of Electronics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan. E-mail: mitoh@elcs.kyutech.ac.jp

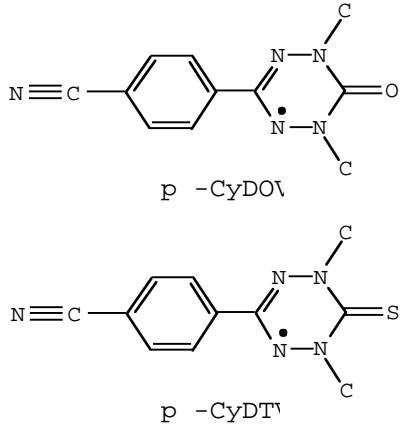


Fig. 1. The molecular structures of *p*-CyDOV and *p*-CyDTV.

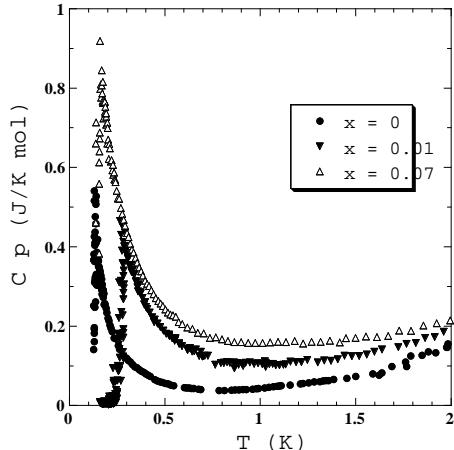


Fig. 2. Temperature dependence of heat capacity C_p for $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$ for $x = 0, 0.01$ and 0.07 .

≥ 0.03 . The heat capacity C_p was measured with the adiabatic heat-pulse method using the ^3He - ^4He dilution refrigerator.

3. Experimental Results

Figure 2 shows the temperature dependence of C_p of $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$ for $x = 0, 0.01$ and 0.07 . There can be the impurity of $0.1\text{--}0.5\%$ even in the non-doped system ($x = 0$). The AF transition was observed at $T_N = 0.135, 0.290$ and 0.164 K for the crystals with $x = 0, 0.01$ and 0.07 , respectively. Each magnetic entropy of the AF order for the crystals with $x = 0, 0.01$ and 0.07 is estimated to be $5.3\%, 6.3\%$ and 14.4% of $Nk_{\text{B}}\ln 2$, respectively.

Figure 3 shows the x -dependences of T_N and T_{SP} , where the values of T_{SP} are those obtained by magnetic susceptibility measurements [6]. In the low doping re-

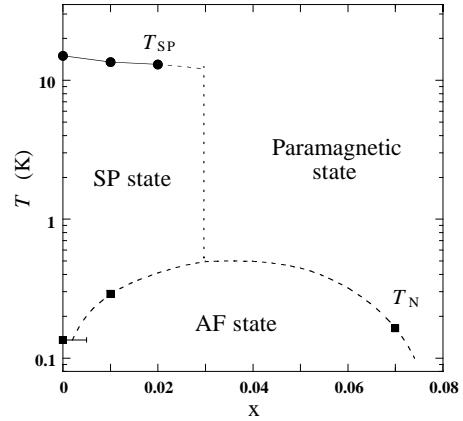


Fig. 3. T_N and T_{SP} for $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$ with $x = 0, 0.01$ and 0.07 . The value of T_{SP} is referred to the result of magnetic susceptibility in ref.6.

gion of $x = 0$ and 0.01 , the SP state and the AF order coexist. For $x = 0.07$, a single phase of AF order is realized. These behaviors are consistent with the doping effect on CuGeO_3 . However, T_N 's of *p*-CyDOV are much lower than those of CuGeO_3 . Due to the mean-field theory, the ratio between interchain and intra-chain interactions is estimated to be 10^{-1} for CuGeO_3 and 10^{-4} for *p*-CyDOV. This indicates that *p*-CyDOV has ideal one-dimensional character.

4. Conclusion

The doping effect of magnetic impurity (*p*-CyDTV) on an organic radical SP compound *p*-CyDOV ($T_{\text{SP}} = 15.0$ K) has been studied by heat capacity measurement of $(p\text{-CyDOV})_{1-x}(p\text{-CyDTV})_x$. In the low doping region of $x = 0$ and 0.01 , the antiferromagnetic order and the spin-Peierls state coexist, and at $x = 0.07$ the single phase of AF order is realized. The doping effect on *p*-CyDOV system is similar to that on CuGeO_3 system, and the disorder caused by the impurity does not only destroy the spin-Peierls state but also induces the AF order.

References

- [1] S. B. Oseroff *et al*, Phys. Rev. Lett. **74** (1995) 1450.
- [2] K. Manabe *et al*, Phys. Rev. B**58** (1998) R575.
- [3] T. Masuda *et al*, Phys. Rev. Lett. **80** (1998) 4566.
- [4] H. Fukuyama *et al*, J. Phys. Soc. Jpn. **65** (1996) 1182.
- [5] S. Huizinga *et al*, Phys. Rev. B**19** (1979) 4723.
- [6] K. Mukai *et al*, Chem. Phys. Lett. **311** (1999) 446.
- [7] K. Mukai *et al*, J. Phys. Chem. B**103** (1999) 10876.