

Thermal conductivity in B- phase of UPt₃

K. Maki ^{a,1}, P. Thalmeier ^b

^a Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
 and Dept. of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA
^b Max-Planck-Institute for the Chemical Physics of Solids, Nöthnitzer Str.40, 01187 Dresden, Germany

Abstract

We have shown that the magnetothermal conductivity in the vortex state in unconventional superconductors provides a powerful technique to access the nodal locations in the superconducting order parameter $\Delta(\mathbf{k})$. We shall explore this technique in the B phase of UPt₃ for low temperatures and fields and derive expressions for the thermal conductivity with the E_{2u} order parameter.

Key words: magnetothermal conductivity; unconventional superconductivity; UPt₃

Perhaps UPt₃ with 3 distinct superconducting phases A, B and C is one of the most well studied Heavy Fermion superconductors[1]. Both thermal conductivity data and Pt- NMR data point to the triplet superconductor of E_{2u}- type[2,3] with nodal points at $\vartheta = 0$ and π and the horizontal nodal line at $\vartheta = \frac{\pi}{2}$, where ϑ and φ are the polar coordinates designating \mathbf{k} , the quasiparticle wave vector (see Fig. 1). However there are no experiments which directly indicate the nodal points and lines in $\Delta(\mathbf{k})$ in UPt₃. Here we limit ourselves to the B- phase where the order parameter is supposed to be given by

$$\Delta(\vartheta, \varphi) = \frac{3}{2}\sqrt{3}\Delta \exp(\pm 2i\varphi) \cos \vartheta \sin^2 \vartheta \quad (1)$$

and calculate the quasiparticle DOS and the thermal conductivity in the limit $\tilde{v}\sqrt{eH} \ll T \ll \Delta(0)$ for arbitrary magnetic field (\mathbf{H}) direction given by the polar and azimuthal field angles θ and ϕ respectively. Here $\tilde{v} = (v_a v_c)^{\frac{1}{2}}$ is the characteristic Fermi velocity and these quantities are evaluated within semiclassical approximation[4-8].

The quasiparticle DOS for the B- phase in the superclean limit $(\Gamma\Delta)^{\frac{1}{2}} \ll \tilde{v}\sqrt{eH}$ (Γ is the quasiparticle scattering rate) is given by

¹ E-mail:maki@mpipks-dresden.mpg.de

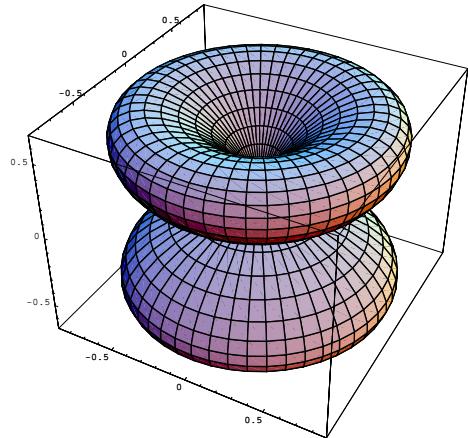


Fig. 1. Polar plot of $|\Delta(\vartheta, \varphi)|$ in B- phase.

$$\frac{N(0)}{N_0} = g(0) = \frac{1}{\sqrt{3}}\tilde{v}\sqrt{eH}I_B(\theta) \quad (2)$$

where

$$I_B(\theta) = \alpha \sin \theta + \frac{2}{\pi} E(\sin \theta) \quad (3)$$

and $E(\sin \theta)$ is the complete elliptic integral, N_0 is the DOS in the normal state and $\alpha = \frac{v_c}{v_a} = 1.64$ [1] is the anisotropy of Fermi velocities. The angular dependence

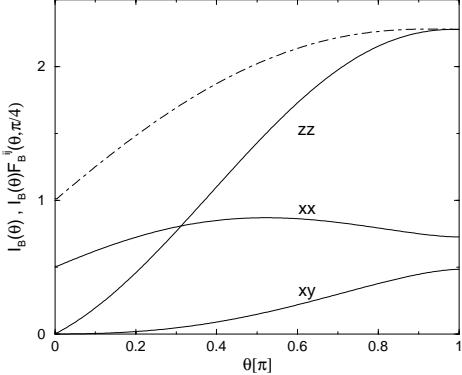


Fig. 2. Polar field angle dependence of $I_B(\theta)$ (dashed-dotted) and $I_B(\theta)F_B^{ij}(\theta, \frac{\pi}{4})$ (ij= xx, zz, xy) which determine the θ -dependence of DOS $g(0)$, thermal conductivities (κ_{xx}, κ_{zz}) and Hall coefficient (κ_{xy}) respectively.

of $I_B(\theta)$ is shown in Fig. 2. It determines the θ - dependence of specific heat, spin susceptibility etc. which are given by

$$\frac{C_s}{\gamma_N T} = \frac{\chi_s}{\chi_N} = 1 - \frac{\rho_s(H)}{\rho_s(0)} = g(0) \quad (4)$$

where ρ_s is the superfluid density.

Similarly the thermal conductivity κ_{xx} for $T \ll \bar{v}\sqrt{eH} \ll \Delta(0)$ in the superclean limit is given by

$$\begin{aligned} \frac{\kappa_{zz}}{\kappa_n} &= \frac{2}{3} \frac{v_a v_c}{\Delta^2} (eH) I_B(\theta) F_B^{zz}(\theta) \\ \frac{\kappa_{xx}}{\kappa_n} &= \frac{1}{3} \frac{v_a^2}{\Delta^2} (eH) I_B(\theta) F_B^{xx}(\theta) \\ F_B^{zz}(\theta) &= \sin \theta \\ F_B^{xx}(\theta, \phi) &= \frac{2}{\pi} \left[\sin^2 \phi E(\sin \theta) + \cos(2\phi) \frac{1}{3 \sin^2 \theta} \right. \\ &\quad \left. \cdot (\cos^2 \theta K(\sin \theta) - \cos(2\theta) E(\sin \theta)) \right] \end{aligned} \quad (5)$$

and the thermal Hall coefficient κ_{xy} by

$$\begin{aligned} \frac{\kappa_{xy}}{\kappa_n} &= - \frac{v_a^2 (eH)}{3 \Delta^2} I_B(\theta) F_B^{xy}(\theta, \phi) \\ F_B^{xy}(\theta, \phi) &= \frac{2}{\pi} \frac{\sin(2\phi)}{3 \sin^2 \theta} \\ &\quad \cdot [(2 - \sin^2 \theta) E(\sin \theta) - 2 \cos^2 \theta K(\sin \theta)] \end{aligned} \quad (6)$$

The θ - dependence of κ_{ij} (ij=xx,zz,xy) is again shown in Fig. 2. As in $\text{YNi}_2\text{B}_2\text{C}$ [9] the cusp in C_s and κ_{zz} indicates the presence of point nodes in the $\Delta(\mathbf{k})$ of UPt_3 . Furthermore ϕ is the angle between the heat current and the magnetic field projected on the a-b plane and $K(\sin \theta)$ is again a complete elliptic integral. In the limit $\theta = \frac{\pi}{2}$, $I_B(\frac{\pi}{2}) = \alpha + \frac{2}{\pi}$ and then

$$\kappa_{xx} \sim \frac{1}{\pi} \left(1 - \frac{1}{3} \cos(2\phi) \right); \quad \kappa_{xy} \sim \frac{2}{3\pi} \sin(2\phi) \quad (7)$$

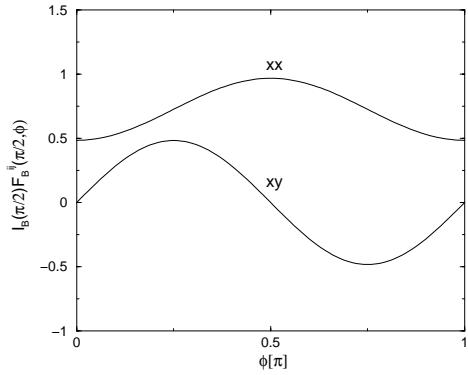


Fig. 3. ϕ - dependence of $I_B(\frac{\pi}{2})F_B^{ij}(\frac{\pi}{2}, \phi)$ (ij=xx,xy). The zz-component has no ϕ - dependence.

In Fig. 3 we show the ab- plane ϕ - dependences of κ_{xx} and κ_{xy} . The maximum in κ_{xx} occurs for heat current $\perp \mathbf{H}$ when the Doppler shift of quasiparticle energies is most effective and we have $\kappa_{xx}(\phi = \frac{\pi}{2})/\kappa_{xx}(\phi = 0) = 2$.

We have shown earlier that the nodal directions in a variety of unconventional superconductors are accessible[4,5]. For example from the magnetothermal conductivity in Sr_2RuO_4 , it is concluded that the nodes are horizontal and lie around $k_z = \pm \frac{\pi}{2c}$ [10,11]. This indicates that the interlayer coupling plays the crucial role in Sr_2RuO_4 [12]. Also $d_{x^2-y^2}$ - symmetry in Heavy Fermion superconductor CeCoIn_5 [13] and organic superconductors[14] have been established in a similar way.

References

- [1] R. Joynt, L. Taillefer, Rev. Mod. Phys. **235**(2002) 74
- [2] B. Lussier, B. Ellman, L. Taillefer, Phys. Rev. B **53**(1996) 5145
- [3] H. Tou et al, Phys. Rev. Lett. **77**(1996) 1374; **80**(1998) 3129
- [4] H. Won and K. Maki, cond-mat/004105
- [5] T. Dahm, H. Won and K. Maki, cond-mat/004105
- [6] H. Won and K. Maki, Europhys. Lett. **52**(2000) 427
- [7] P. Thalmeier and K. Maki, Europhys. Lett. **58**(2002) 119
- [8] K. Maki, P. Thalmeier and H. Won Phys. Rev. B **65**(2002) R140502
- [9] K. Izawa et al, cond-mat/0205178
- [10] M. A. Tanatar, M. Suzuki, S. Nagai, Z. Q. Mao, Y. Maeno, T. Ishiguro Phys. Rev. Lett. **86**(2001) 2649
- [11] K. Izawa et al, Phys. Rev. Lett. **86**(2001) 2653
- [12] H. Sato and M. Kohmoto, J. Phys. Soc. Jpn. **60**(2000) 3505
- [13] K. Izawa et al, Phys. Rev. Lett. **87**(2001) 57002
- [14] K. Izawa et al, Phys. Rev. Lett. **88**(2002) 27002