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Abstract

An integral dispersion equation is derived and used to investigate the spectral and relaxation properties of sur-
face plasma oscillations in layered conductors with quasi-2D motion of charge carriers. The results demonstrate
significant differences from the case of an isotropic metal.
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1. The standard hydrodynamic theory of surface
plasma oscillations is actually based on the isotropic
model of metal [1-3]. At the present time there is
considerable research attention to synthetic metal-
like compounds, having a pronounced layered crystal
structure and a sharp anisotropy of both the static
and HF electric conductivity. As a rule, such objects
are characterized by an effectively reduced dimension-
ality of electron energy spectrum, i.e., by open Fermi
surfaces of the “corrugated cylinder” type [4]. The in-
fluence of such anisotropy on the properties of surface
plasmons can be taken into account in a consistent way
only within the framework of a microscopic descrip-
tion based on the kinetic equation for non-equilibrium
electron distribution function ψ .

2. Let the wave vector k and inner normal n to the
sample surface be directed along principal (assumed
to be mutually perpendicular) crystallographic axes;
electric field E lies in the (k,n) plane (TM-wave). If
we neglect the retardation due to finite speed of light
(k >> ω/c), the basic equations in semi-infinite metal
(xn ≥ 0) are

∇ ·E = −4πe 〈ψ〉 ≡ −4πe
2

(2πh̄)3

∫
ψv−1dSF (1)

vn∂ψ/∂xn + i(k · v − ω − i/τ)ψ = −eE · v (2)
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(v = ∂ε/∂p is the electron velocity on Fermi surface
SF ; τ , the electron relaxation time, is expected to sat-
isfy ωτ >> 1 at low temperatures). Here we assume
the simplest (acceptable for ideal surface) ”specular”
boundary condition: ψ(+0, vn) = ψ(+0,−vn) . It per-
mits, after even continuation of electric scalar potential
to xn < 0 , the direct Fourier transformation (xn → q)
of Eqs.(1), (2). In q-representation the solution (of unit
value En(0)) is

E(k, q) = 2Qeik·x−iωt/iQ2ε(Q, ω) (3)

ε ≡ 1 + 4πe2Q−2

〈
Q · v

Q · v − ω

〉
(4)

where ε(Q, ω) is the dielectric function in bound-
less metal for longitudinal wave with wave vector
Q = k + nq ; ω means ω + i0 in Eq.(4).

In microscopic consideration the both components
of electric field have to be continuous on metal border.
Matching the inverse Fourier transform of (3) with the
solution in vacant half-space, E = (i, 1) exp(ik · x +
kxn − iωt) , we obtain the integral dispersion equation

1 +
k

π

∫ +∞

−∞

dq

Q2ε(Q, ω)
= 0. (5)

In principle it solves the stated problem, enabling one
to find the spectrum and collisionless damping of sur-
face waves for any specified spectrum of the charge car-
riers.
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3. We use here the simple, but characteristic, ana-
lytical model of a quasi-2D electron energy spectrum
in layered conductors [5]:

ε(p) = (p2
x + p2y)/2m − (h̄vz0/a) cos(apz/h̄). (6)

Here a is the lattice period across the layers (the 0Z
axis) and vz0 , the maximum z-projection of electron
velocity, is assumed to be small compared to vF ≡√

2εF/m. So the Fermi surface is a slightly corrugated
open cylinder, and parameter

µ =
〈
v2

z

〉
/
〈
v2

x

〉
= (vz0/vF )2 << 1 (7)

characterizes the anisotropy of local values of high-
frequency conductivity. The square of the plasma fre-
quency for bulk waves propagating along 0Z is reduced
in this same ratio:

Ω2
⊥ = 4πe2

〈
v2

x

〉
= 4πNe2/m ≡ Ω2,

Ω2
z = 4πe2

〈
v2

z

〉
= µΩ2

(8)

(N is the concentration of free carriers). In this model
the longitudinal dielectric functions for the principal
directions of the wave vector K, i.e., parallel and per-
pendicular to 0Z, are easily calculated to be

εz(K,ω) = 1 + 2(Ω/KvF )2
(
1 − ω/

√
ω2 −K2v2

z0

)
ε⊥(K,ω) ∼= 1 + 2(Ω/KvF )2

(
1 − ω/

√
ω2 −K2v2

F

) (9)

4. The solving of Eq. (5) is too complicated if there
is an anisotropy in (k,n) plane. However, only long
surface waves (with k << Ω/vF , kF ) are reachable to
direct experimental observation; so it is reasonable to
limit consideration to the main approximation in k. At
small k the integrand in (5) has a pole at small |Q| (
q0 ∼ ik ; see (4)); the residue in it gives us the term
not depending on k , and the rest of integral has to
be calculated at zero k . So the dispersion equation is
linear in k and can be rewritten in the form

k

+∞+i0∫
−∞+i0

dq

πq2εn(q, ω)
= −1 − ε−1

n (0, ω)

√
εk(0, ω)

εn(0, ω)
(10)

where εk and εn can be εz or ε⊥ from Eqs. (9). When k
or n is orthogonal to the layers, the right hand becomes
zero at

ω = Ωµ ≡ Ω
√
µ/(1 + µ), (11)

and in the symmetric case k,n ⊥ 0Z we have to set
µ = 1 : here the spectrum begins from Ω/

√
2, as in

an isotropic metal [1-3]. Note that integral in (10) has
imaginary part due to the branch points of functions
(9). This describes the Landau collisionless damping,

that inevitably occurs in a system whose particles can
move in phase with the wave. Finally,

k(ω) ∼= ω − Ωµ

V
(1 + iΓ) (12)

where V is the group velocity and Γ is relative damp-
ing of surface wave. Calculating the integral in three
principal geometric orientations, we obtain:

k ‖ 0Z : V ≈ (µ/
√

2)vz0; Γ ≈ −0.449
√
µ ln

√
µ (13)

n ‖ 0Z : V ≈ (
√

3/2)vF ; Γ ≈ 0.096µ3/2 (14)

k,n ⊥ 0Z : V ≈ 0.439vF ; Γ ≈ 0.032 (15)

The velocity is anomalously low for the wave propagat-
ing across the layers along a crystal boundary perpen-
dicular to them; such waves could find a technical use
for so-called delay lines. We also note the specific small-
ness (stemming from the smallness of the anisotropy
parameter µ) of relative damping Γ in first two cases;
but in third case which is qualitatively equivalent to
an isotropic metal, the collisionless damping happens
to be small only numerically.

5. At last, in retardation region, i.e. at very small
k (k ∼ ω/c), we obviously can operate in macroscopic
way, using the local values of partial dielectric functions
(9) in Maxwell equations and matching on the border
Eext

k = Ein
k and Eext

n = εn(0)Ein
n . In main geometries

indicated in (13-15) it gives us the following dispersion
relations

k(ω) ∼= ω

c

√
µ

Ω2 − ω2

µΩ2 − (1 + µ)ω2

k(ω) ∼= ω

c

√
µΩ2 − ω2

µΩ2 − (1 + µ)ω2

k(ω) ∼= ω

c

√
Ω2 − ω2

Ω2 − 2ω2
(16)

respectively.
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