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Abstract

We present a theoretical study of the BCS-BEC (Bose-Einstein condensation) crossover in a trapped gas of Fermi
atoms including the effect of a Feshbach resonance. Going past the simple mean field approximation, we include
the effect of fluctuations in the strong coupling limit involving two kinds of Bose molecules, i.e., Feshbach molecules
associated with the resonance and preformed Cooper-pairs in which the pairing interaction is mediated by Feshbach
quasi-molecules. The superfluid phase transition is shown to change continuously from the BCS-type to a BEC of
these two kinds of Bosons, as the threshold energy of the Feshbach resonance is lowered.
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Superfluidity in ultracold gases of Fermi atoms is
one of the hottest topics in current physics research. At
present, Fermi gases (40K and 6Li) have been cooled to
T ∼ 0.2TF (where TF is the Fermi temperature).[1] Re-
cent work[2,3] pointed out that a Feshbach resonance
can enhance the pairing mechanism for Cooper-pairs
in such atomic systems.

The Feshbach resonance originates from the hyper-
fine interaction. In this resonance, a quasi-molecule is
formed and this can give rise to an attractive interac-
tion between the Fermi atoms. Since this interaction
becomes very strong when the threshold energy of the
resonance is tuned optimally, we can expect superfluid-
ity to occur at a higher transition temperature Tc. How-
ever, such a strong pairing interaction is also known to
enhance superfluid fluctuations, which in turn suppress
Tc predicted by a simple weak-coupling BCS theory.[4]
Thus in considering “high-Tc” superfluidity induced by
a Feshbach resonance, we have to include these fluc-
tuation contributions. In this paper, we discuss such
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strong fluctuation effects on Tc in a gas of Fermi atoms
with a Feshbach resonance.[5,6]

This system can be described by the coupled
Fermion-Boson model Hamiltonian[7,2,3]

H =
∑

pσ

εpc†pσcpσ +
∑

q

(Eq + 2ν)b†qbq

− U
∑

p,p′
c†p↑c

†
−p↓c−p′↑cp′↓

+ g
∑

p,q

[b†qc−p+q/2↓cp+q/2↑ + h.c] + Vtrap. (1)

Here c†pσ is the creation operator of a Fermi atom with
the kinetic energy εp = p2/2m. The pseudo-spin vari-
able σ =↑, ↓ describes two hyperfine states responsible
for superfluidity. Creation of the (Feshbach) molecular
Boson by the resonance is expressed by b†q and Eq +
2ν = q2/2M + 2ν is the kinetic energy of this Boson.
The bottom of this Bose energy spectrum, 2ν, is also
referred to as the threshold energy. Since one molecu-
lar b-Boson consists of two Fermi atoms with the mass
m, we take M = 2m. This condition also leads to the
conservation of the total number of Fermi atoms; this
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constraint can be incorporated into the model Hamilto-
nian (1) by replacing εp → εp−µ and Eq → Eq−2µ,[5]
where µ is the chemical potential. The interaction term
in (1) including g describes the Feshbach resonance,
in which two Fermions form a b-Boson and the related
decay of a b-Boson into two Fermions. The Hamilto-
nian also includes the attractive interaction −U < 0
originating from non-resonant processes. The last term
Vtrap ≡ ∑

j
1
2
mω2

0r2
j is an isotropic harmonic poten-

tial, where rj is the position of the j-th atom.
We take into account the effect of superfluid fluc-

tuations within the Gaussian approximation, extend-
ing the theory developed by Noziéres and Schmitt-
Rink.[4] In the present case, we include infinite order
processes involving the Feshbach coupling interaction
g, as well as the usual superfluid Cooper-pair fluctu-
ations caused by U .[5] As for the effect of Vtrap, we
employ the usual local density approximation (LDA).
Within this LDA, Tc is determined from the Thouless
criterion by the condition that the phase transition
first occurs at the center of the trap potential (largest
density). The chemical potential µ is determined from
the thermodynamic potential including the effect of su-
perfluid fluctuations within the Gaussian approxima-
tion. We solve these two equations for Tc and µ self-
consistently.[5,6]

The BCS-BEC crossover behavior is shown in
Fig.1(a). As the threshold energy 2ν decreases, Tc

continuously changes from the BCS-type to the BEC-
type. In the BEC regime, Tc is much smaller than the
value expected from the weak-coupling BCS theory
because of the effect of the fluctuations; as expected,
Tc approaches 0.518εF in the formal limit ν � −εF,
where εF is the Fermi energy of the free Fermi gas.

As the threshold energy 2ν is lowered (namely, the
gas approaches the BEC regime), stable preformed
Cooper-pairs (NC) appear as shown in Fig. 1(b). This
phenomenon is the same as that discussed by Noziéres
and Schmitt-Rink in strong coupling superconductiv-
ity.[4] However, in the present case, besides this kind
of Boson (preformed Cooper-pairs), Feshbach-induced
molecules also become stable in the BEC regime (NB).
In the limit ν � εF, these Bosons are seen to become
the dominant excitations. This situation is in con-
trast to the case of ordinary superconductivity (where
g = 0), where the preformed Cooper-pairs are the
dominant Bosons in the BEC regime.[4]

The change of the character of the particles from
Fermi atoms (N0

F) to composite Bosons (NB+NC) also
affects the spatial distribution of atoms in the trap (see
inset in Fig. 1.). Because of the Pauli exclusion prin-
ciple, the spatial distribution of Fermi atoms is spread
out for ν = εF (where Bosons are almost absent). How-
ever, as ν decreases, the atoms form Bosons and these
are seen to cluster at the center of the trap, due to their
Bosonic character.
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Fig. 1. (a) Dependence of Tc on the Feshbach threshold 2ν

for Fermions in a harmonic trap.[6] BCS represents the mean

field BCS limit[3] and BEC gives Tc for N/2 non-interacting

Bosons in a trap. (b) ν-dependence of the number of free

Fermions N0
F , stable Feshbach molecules NB and stable pre-

formed Cooper-pairs NC. Inset: Density profile at Tc. RF is

the radius of the gas at T = 0 in the case of free Fermi atoms.

One molecule counts as two atoms. The contributions of the

scattering states and the Feshbach resonating quasi-molecules

are included.

In conclusion, we have discussed the BCS-BEC
crossover in a trapped gas of Fermi atoms with a
Feshbach resonance. In the BEC regime, two kinds
of stable Bosons appear. This crossover phenomenon
affects the spatial distribution of atoms, which may
be useful in detecting the formation of these Bosons
experimentally. The collective mode spectrum below
Tc will be discussed elsewhere.[6]
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