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Abstract

We propose a mechanism which leads to ferromagnetism in extended Hubbard models on lattices composed of
triangles. We show that the ferromagnetic ground state is stabilized in the quarter filling case through a third-order
electron exchange process around a triangle when both on-site repulsive interaction and nearest-neighbor one are
much larger than the hopping terms. Numerical calculations for a one-dimensional lattice consisting of triangles
give the evidence that the ground state is ferromagnetic not only in the quarter-filling case but also away from
quarter-filling.
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Much effort has been invested in studying the Hub-
bard model, the tight binding model with the on-site
repulsive interaction, to understand ferromagnetism in
itinerant electron systems. Through a number of ana-
lytical and numerical works and a few rigorous works
[1-4], it is now known that the model exhibits ferro-
magnetism in certain cases, although a true theoretical
understanding of itinerant electron ferromagnetism is
far away.

The Coulomb interaction is a long range interaction,
so that it is important to clarify effects of long distance
electron-electron interactions on ferromagnetism in
real materials. The extended Hubbard model which in-
cludes nearest-neighbor electron-electron interactions
is usually used to study the problem. So far the impor-
tance of the direct exchange interaction in stabilizing
ferromagnetism has been reported [5, 6], but literature
concerning effects of nearest-neighbor Coulomb repul-
sion, which can be the largest among nearest-neighbor
electron-electron interactions, is still limited.

The purpose of the present paper is to examine the
effect of the nearest-neighbor Coulomb repulsion. It is
noted that the nearest-neighbor Coulomb repulsion is
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independent of spin, unlike the direct exchange inter-
action, and how ferromagnetism is affected by it is a
non-trivial problem [7]. We consider the following ex-
tended Hubbard model on a one-dimensional trestle
lattice (Fig.1),

H =
∑
j,σ

(−t c†j,σcj+1,σ + t′ c†j,σcj+2,σ + H.c.)

+U
∑

j

nj,↑nj,↓ + V
∑
j,σ,τ

nj,σnj+1,τ , (1)

where c†j,σ, cj,σ and nj,σ are the creation, annihilation
and number operators for an electron with spin σ at
the j th site, respectively. The density of electrons is
defined by n = Ne/L, where Ne is the number of elec-
trons, and L is the total number of sites. We show that
the ferromagnetic phase exists in the ground state of
Hamiltonian (1) at the quarter-filling by a perturba-
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Fig. 1. A one-dimensional trestle lattice
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tion theory and away from quarter-filling by numerical
calculations.

First, we consider the case of U → ∞ and V → ∞ at
the quarter-filling (n = 1/2). In this limit, the states in
which each even site is occupied by just one electron are
the ground states. There is no spin-spin correlation in
these states, i.e., the ground states are paramagnetic.

Next, relaxing the condition as t, t′ � V , we derive
the effective Hamiltonian. The first-order perturbation
theory in 1/V is vanishing and the second-order one
only shifts the energy by a constant, but through the
third-order perturbation process (Fig.2) we obtain the
following effective Hamiltonian:

Heff = −4t′
(

t

V

)2∑
j

(
�j ·�j+2 − 1

4

)
+const, (2)

where �j is an operator of a spin-1/2 at site j. This is
just a ferromagnetic Heisenberg model.
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Fig. 2. The third-order process leading to ferromagnetic effec-

tive exchange Jeff = −4t′(t/V )2 .

Furthermore, assuming t, t′ � U , we take into
account the lowest term in 1/U . The term which
should be added to the effective Hamiltonian (2) is
4[(t′)2/U ]

∑
j
(�j · �j+2 − 1

4 ), i.e., a kinetic exchange
one. Therefore, whether the effective Hamiltonian for
large values of U and V favors ferromagnetism or not
will be decided by the competition between a ferro-
magnetic term and an antiferromagnetic one, in other
words, whether U ≥ Uc ∼ t′(V/t)2 or not.
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Fig. 3. The phase diagram for n = 1/2, t = 1.0 and t′ = 0.2.

The solid line is U = t′(V/t)2, and Uc which is represented by

solid circles are estimated by a sample-size scaling of numerical

calculations. In the inset we display the sample-size scaling for

some values of V .

Figure 3 is a result of exact numerical diagonaliza-
tions with open boundary conditions. The result sup-
ports the mechanism for ferromagnetism by the third-
order process for t, t′ � U,V . Our numerical calcula-
tions also indicate that the ground states are ferromag-
netic for sufficiently large values of U even if the value
of V is small, in which the perturbation theory breaks
down.

Finally, we discuss the case of n < 1/2. Figure 4
is a result of exact numerical diagonalizations with
open boundary conditions. This result shows that
for sufficiently large values of U and V the ground
states are saturated ferromagnetic over a wide range
of n < 1/2. In particular, we find that ferromagnetism
is most stabilized in a certain density (n ∼ 0.4) of
electrons away from the quarter-filling. This indicates
that greater mobility of electrons in addition to the
ferromagnetic exchange interaction arising from the
third-order electron exchange process in 1/V generates
ferromagnetism successfully.

In this paper we investigated the one-dimensional
trestle lattice, and it is expected that the present mech-
anism for ferromagnetism can work for other lattices
composed of triangles, such as bcc and fcc, provided U
and V are much larger than hopping terms.
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Fig. 4. The phase diagram for t = 1.0, t′ = 0.2 and V = 10.
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