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Abstract

We investigate the electron-hole asymmetry in the superconduting state based on the ingap state and the superex-
change interaction Js in the d–p model, where we take the antiferromagnetic fluctuations in the fluctuation-exchange
(FLEX) approximation and take the superconducting fluctuations in the self-consistent t-matrix approximation.
We show that the superconducting gap in the hole-doped region is several times larger than that in the electron-
dopd region. This difference is due to the intrinsic nature of the ingap states which are intimately related with
the Zhang-Rice singlets in the hole-doped systems and are correlated d-electrons in the electron-doped systems,
respectively.
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1. Introduction

Some kinds of electron-hole asymmetry has been
observed in the high-Tc cuprate superconductors, e.g.
the doping ranges, where the antiferromagnetic (AF)
state and the superconducting (SC) state emerge in
the electron-doped cuprates (EDC), are defferent from
those in the hole-doped cuprates (HDC), and the SC
gap in the EDC is much smaller than that in the
HDC[1–3].

In our previous studies[4,5], we obtained the T − δ
phase diagram by taking the AF fluctuations in the
fluctuation-exchange approximation and taking the SC
fluctuations in the self-consistent t-matrix approxima-
tion, which is based on the ingap state and the superex-
change interaction Js in the d–p model[6–8], where δ is
hole doping rate. The obtained phase diagram is con-
sistent with those observed in cuprates[1,2].

In the present study we investigate the SC gap by
using the same approximation as that used in our pre-
vious studies[4,5]. We show that the SC gap in the
HDC is several times larger than that in the EDC. This
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electron-hole asymmetry is due to the intrinsic nature
of the ingap states.

We take the d–p model for describing the electronic
system in the CuO2 plane:

H = εp

∑
kσ

c+
kσckσ + εd

∑
iσ

d+
iσdiσ

+ N
− 1

2
L

∑
ikσ

{tikc+
kσdiσb+i + h.c.}, (1)

which is treated within the physical subspace where
local constraints Q̂i =

∑
σ

d+
iσdiσ + b+

i bi = 1 strictly
hold in order to exclude double occupancy of d-holes.
In the above, ckσ, diσ and bi are annihilation operators
for a p-hole, a pseudo fermion representing a single
occupation of d-hole and a slave boson representing a
vacancy of the d-hole, respectively.

The quasi-particle Green’s functions of the leading
order in the 1/N -expansion are given by [6,7]

G0(k, ω) =
∑
γ=±

Aγ(k)/(ω − Eγ(k) + i0+), (2)

with Eγ(k) = 1
2 [εp + ω0 + γ((εp − ω0)

2 + 4bt2k)1/2] ,
Aγ(k) = γ(Eγ(k) − ω0)/(E+(k) − E−(k)), where γ =
− and + denote the ingap state and the p-band, and
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N represents the degeneracy of d-hole. The binding
energy ω0 and the residue b of the slave boson are self-
consistently determined together with µ, and then µ is
located in the ingap state.

The system is the charge transfer (CT) type of the
Mott insulator at δ = 0, where the hole number n =
1 + δ. In the HDC (δ > 0), doped p-holes form the
quasi-particle band called as the ingap state inside the
CT gap near the p-band. In the EDC (δ < 0), on the
other hand, the ingap state is the d-like band inside
the CT gap near the localized d-state.

The renormalized Green function is given by the cou-
pled equations of the AF fluctuations and the SC fluc-
tuations derived in our previous stuides[4,5].

G(k, ω) = [G0(k, ω)−1 − ΣSC(k, ω)

−ΣSCf(k, ω) − ΣAFf(k, ω)]−1, (3)

where ΣSC(k, ω) = −Gn(k,−ω)∗|∆̃SC(k)|2, with
Gn(k, ω) = [G0(k, ω)−1 − ΣSCf(k, ω) − ΣAFf(k, ω)]−1

and ∆̃SC(k) is determined by the gap equation.
ΣSCf(k, ω) and ΣAFf(k, ω) are the self-energy correc-
tions due to the SC and AF fluctuations given by
the the fluctuation exchange approximation and the
self-consistent t-matrix approximation, respectively.

The energy of quasi-particles in the SC state is given

by Yγ′(k) ∼= γ′
√

E−(k)2 + A−(k)2∆̃SC(k)2 (γ′ = ±),

then the observable superconducting gap is given by
∆SC(k) = A−(k)∆̃SC(k).

Figure 1 shows the phase diagram obtained in our
previous studies[4,5]. The AF state in the EDC per-
sists to higher doping rate than that in the HDC. The
SC state and the spin gap region appears in narrower
doping range than that in the HDC. Those features
account for the phase diagrams observed in cuprates.

Figure 2 shows that the SC gap has dx2−y2 -like sym-
metry. The inset shows that the SC gap in the HDC
is several times larger that that in the EDC, because
∆SC(k) is renormaliazed by the residue A−(k), where
A−([π, 0]) = 0.052, 0.189 and 0.162 at δ = −0.18, 0.18
and 0.15.
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Fig. 1. The T -δ phase diagram where the system is in the

superconducting state with dx2−y2 symmetry in the region of

T ≤ Tc, and is in the antiferromagnetic state in the region

of T ≤ TN. The spin gap temperature TSG is defined as the

temperature at which 1/T1T has a maximum. The metallic

region in T <∼ T0 is the anomalous metallic phase.
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Fig. 2. k- and T -dependence of ∆SC(k) at δ = −0.18, 0.18 and

0.15.
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