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Abstract

The distribution of conductance g in phase coherent mesoscopic conductors is investigated near the Anderson
transition. The distribution function P (g) in 3D orthogonal systems shows single parameter scaling, which reconciles
the phenomenon of the universal conductance fluctuation with the scaling theory of localisation.
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1. Introduction

The most revolutionary idea in the theory of disor-
dered systems, the scaling theory of localisation [1], is
now over twenty years old. It has been known for almost
as long that the central hypothesis of the scaling theory,
that the conductance of disordered system obeys a one
parameter scaling law, is not correct. It was realised
shortly after the proposal of the scaling theory that the
scaling hypothesis is inconsistent with phenomenon of
mesoscopic conductance fluctuations. Instead, it was
generally thought that the scaling hypothesis must ap-
ply to some average of the conductance distribution of
perhaps to the distribution of conductance itself. Yet,
until our recent paper [2], no demonstration that this
is the case, or an identification of which average or av-
erages obey the scaling hypothesis, has ever been pre-
sented. Indeed, in the classic numerical work on An-
derson localisation [3], in which the localisation of elec-
trons on quasi-one dimensional system was analysed,
the conductance was never calculated and only an in-
direct verification of scaling hypothesis was possible.

In our recent paper [2] we simulated ensembles of
three dimensional disordered systems and studied their
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zero temperature conductance distribution. We pre-
sented an explicit demonstration that both the mean
resistance, the mean conductance and the mean of the
logarithm of the conductance all obey single parame-
ter scaling laws. We were further able to show that,
even though the β-function for each average is differ-
ent, the critical exponents deduced from the scaling of
each average are the same.

In this contribution we analyse the scaling of the con-
ductance distribution rather than its averages. Naively
it might be thought that scaling of the averages neces-
sarily implies scaling of the distribution. Unfortunately
there is no logical justification for this statement. For
example, a Guassian distribution may have a mean
and variance which obey independent scaling laws or
the variance might not even obey a scaling law. Thus,
while our results for the scaling of different averages of
the conductance distribution are suggestive, they are
not conclusive as far as the claim that the distribu-
tion of conductance obeys a one parameter scaling law
is concerned. Here we eliminate such possibilities and
demonstrate conclusively that the conductance distri-
bution of a disordered systems obeys a one parameter
scaling law.
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2. Method

A one parameter scaling law for the conductance
distribution p(g) of a three dimensional system of linear
dimension L can be formulated as follows:

p(g) � F (g;X),
d ln X

d lnL
= β(X). (1)

The parameter X need not be one of the moments of
the distribution.

Attempting to verify (1) directly is not the best
approach. Instead, we analyse the scaling of the per-
centiles of the conductance distribution. The precise
definition of the percentile gq is

q =

gq∫

0

p(g)dg (2)

where q ∈ [0, 1]. A demonstration that all the per-
centiles obey consistent one parameter scaling laws is
equivalent to a demonstration of (1).

As a model Hamiltonian we take

H = V
∑

<i,j>

C†
i Cj +

∑
i

WiC
†
i Ci, (3)

where C†
i (Ci) is the creation (annihilation) operator of

an electron at the site i of a three dimensional cubic
lattice. The amplitude of the random potential at site i
is Wi. Hopping is restricted to nearest neighbours and
its amplitude is taken as the unit of energy, V = 1.
We assume a box distribution with each Wi uniformly
distributed on the interval [−W/2, W/2]. We refer to
the strength of the potential fluctuations W as the dis-
order. We evaluate the zero temperature two terminal
conductance gL = 2trt†t, where t is the transmission
matrix describing the propagation of electrons between
opposite faces of the system, using the method of [4].
We subtract the contact resistance from gL to obtain g.

3. Results

In this short paper we present results for the median
conductance only (q = 1/2); our results for other per-
centiles will be presented in a longer paper. In an anal-
ogous manner to that described in [2] we fit the disor-
der and size dependence of the median conductance to
a one parameter scaling law. The Fermi energy is set
at EF = 0.5V . The results are displayed in Figure 1
and 2. The lines in the figures are a 10 parameter fit to
211 data points. The χ2 statistics is 201 corresponding
to a goodness of fit probability of 0.4. The critical dis-
order at which the metal-insulator transition occurs is
estimated to be Wc = 16.48 ± .01. The estimate of the

Fig. 1. Size dependence of the median conductance for disorder

W ∈ [15,18]

Fig. 2. The same data as in Fig. 1 after removal of corrections

to scaling, re-plotted to demonstrates one parameter scaling.

critical exponent describing the divergence of the lo-
calisation length is ν = 1.58± .01. The critical value of
the median conductance is 0.340± .04 in units of e2/h.
The confidence intervals given are at the 95% level.
The estimate of the exponent is consistent with that
obtained from the scaling of the average conductance
[2].
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