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Abstract

Hydrodynamic modes for ultracold gases at any general density are considered. By writing the equations for the
mode frequencies in a convenient way, we show that it is possible to determine the equation of state of the dense gas
from the knowledge of the hydrodynamic frequencies. As an example, we investigate the case of two equal fermionic
populations in different hyperfine states with attractive interactions.
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1. Introduction

We consider here the possibility of ultracold gases in
dense situations, where interatomic distance and scat-
tering length are comparable, and study the mode fre-
quencies in the hydrodynamic regime. Indeed, most of
the recent work on ultracold gases considered dilute
situations. Dense systems are interesting e.g. in the
search of a BCS transition, since the critical tempera-
ture will be higher in this regime [1,2]. We show here
that the knowledge of the mode frequencies leads di-
rectly to the determination of the equation of state of
the gas, even in non dilute situations.

2. Theory and models

The basic starting equations are the Euler equation
mdv/dt = −∇(µ(n) + V ) and the particle conser-
vation equation ∂n/∂t + ∇ · (nv) = 0. We consider
here to be specific an isotropic harmonic potential
V (r) = 1

2
mΩ2r2, even though our approach could be

generalized to anisotropic situations. The only phys-
ical ingredient (apart from the trap frequency Ω) is
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therefore included in the chemical potential density
dependance µ(n). The equilibrium particle density
n0(r) satisfies µ(n0(r)) + V (r) = µ̃, where µ̃ is the
overall chemical potential. Linearizing these equa-
tions around equilibrium, one finds a linear second
order differential equation for the density fluctuation
n1(r)e

−iω t = n(r, t)−n0(r) oscillating at frequency ω.
It is actually convenient to make the change n1(r) =
(∂µ/∂n0)−1Ylm(θ, ϕ) rlv(r) , so that one gets the fol-
lowing general equation for the hydrodynamic modes
in an isotropic harmonic trap:

rv′′ +
[
2(l + 1) + r L′(r)

]
v′ − (ν2 − l)L′(r)v = 0 (1)

where we have set ν2 = ω2/Ω2 and L(r) = log(n0(r)).
One can then easily check on this equation that, what-
ever the equation of state µ(n), there are modes at fre-
quency ω =

√
l Ω (corresponding to ν2 = l and v = 1).

They correspond physically to the dipolar mode (l =
1) or to surface modes (l ≥ 2) [3]. First Eq.(1) is un-
changed if we rescale r by the radius of the cloud, so
that we can consider 0 < r < 1. We can then notice
that Eq.(1) is only slightly modified by the change of
variable y = rα, if one makes the same change for L(r).
The new equation for the modes becomes:

y
d2v

dy2
+ (1 +

2 l + 1

α
+ y

dL

dy
)
dv

dy
− ν2 − l

α

dL

dy
v = 0 (2)
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Then we consider [6] the two parameters family of
function L(y) = −p/(1− y) corresponding to a chemi-
cal potential of the form µ(n) ∝ 1 − (1 − (n/n(0))1/p)2/α,
where n(0) is the density at the center r = 0 and α,
p are two parameters. In this case, Eq.(2) turns out
to be the hypergeometric differential equation. The
eigenmodes are

ω2

Ω2
= l +

α

p
n (n + p +

2 l + 1

α
) (3)

with n = 1, 2, · · ·. The regular solutions are polynomi-
als in the variable y. Eq.(3) agrees with the known re-
sults for bosons [4] (α = 2 and p = 1) and free fermions
[5] (α = 2 and p = 3/2).

This two parameters family can in fact be extended,
by considering models with L(y) = − 1

1−y (
∑K

k=0
pkyk).

The series expansion of v(y) is very rapidly convergent
[6]. In practice, one can truncate the series expansion
in order to get the modes and their frequencies. These
’quasipolynomial solutions’ therefore enable very easy
numerical calculations of the modes.

These two family of models can give the mode fre-
quencies by fitting a given function µ(n) by a model
chemical potential. Conversely, the knowledge of the
mode frequencies can determine the models parame-
ters (α, p0, p1, · · ·) and lead to an approximate equa-
tion of state µ(n).

3. A specific example

As an example, we consider the specific case of two
equal populations of fermions in different internal hy-
perfine states. We assume an attractive interaction be-
tween atoms in two different internal states with an
interaction g, related to the negative diffusion length a
by g = 4πh̄2 a/m. We consider the Hartree approxima-
tion, where the chemical potential is given by µ(n) =
h̄2k2

f/2m −|g|n/2 with n = 1
3π2 k3

f . The dimensionless
parameter λ = 2

π
kf (0)|a| , where kf (0) is the equilib-

rium Fermi wavevector at the center r = 0, goes from
0 for the very dilute regime, to 1, when we reach at
the center the instability where the gas is going to col-
lapse under the attractive atomic interaction. One can
then calculate numerically exactly the mode frequen-
cies as a function of λ [6]. For a given value of λ, one
can then approximate the Hartree chemical potential
by our model to obtain the parameters p and α through
a least square fit. Then the mode frequencies are de-
termined by Eq.(3). The results are given in Fig.1 for
the monopole modes (l = 0) and are in close agreement
with the numerical ones (the same is true for l = 1 and
2). This result shows that if we have , for a given λ, the
frequencies of the first two modes, we can obtain the
value of α and p, and therefore the chemical potential

µ(n) for 0 < n < n(0). This shows that the measure of
the modes can determine the equation of state µ(n).

One can also study the vicinity of collapse by us-
ing the quasipolynomial model, as is done in Ref.[6].
Morever, one could also fit the chemical potential by
a quasipolynomial model described by e.g. the three
parameters α, p0 and p1.
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Fig. 1. Reduced frequency ν2 = ω2/Ω2 for a Fermi gas within

the Hartree approximation as a function of the coupling con-

stant λ. Full line: exact numerical solution. Dashed line: ap-

proximate analytical solution.

4. Conclusion

We have shown that the knowledge of the mode fre-
quencies in trapped ultracold gases can in principle de-
termine the chemical potential as a function of density,
as we verified for the case of two equal fermionic popu-
lations in different hyperfine states with attractive in-
teraction.
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