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Abstract

Using an analytical model of electron confinement in quantum dots, we have calculated the tunnelling rates for
electron quasi-bound states. Schrődinger equation for the disk-shaped system in consideration is readily solved both
in the time-dependent and time-independent versions, and the quantitative importance of tunnelling phenomena
in low temperature electron emission from quantum dots is revealed. Results of the quantum mechanical analysis
are transferred into the device characteristics of common multi-layer quantum dot hetero-structures.
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Introduction

It is generally recognized that the properties of multi-
layer quantum dot (QD) devices, such as photodetec-
tors, critically depend on the number N of electrons
occupying the QD, and the electron capture/emission
rates. This is because the electric current under ap-

plied voltage, j ∼ e
ΣQD

p
G, is proportional to the elec-

tron escape rate, G = G(N) (due to photo-induced,
thermionic or any other mechanism), density of QDs,
Σ, and inversely proportional to the electron capture
probability, p = p(N).

The thermal dark current and photocurrent in QD
structures have been studied in detail previously [1].
However, for the calculations of the dark current char-
acteristics at low temperatures, the explicit depen-
dence of the electron tunnelling escape rate on N and
other parameters is indispensable. Specific features of
QDs studied in the recent experiments are low QD
density ΣQD and a flattened shape. This provides the
possibility of spontaneous electron tunnelling in the
lateral directions when QDs are markedly charged.
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Fig. 1. Schematic view of QD. Bold line: the potential curve

(N=16, centrifugal terms excluded). Dotted lines: energy levels,

thin lines: wave functions (arbitrary units). Numbers in bracket

indicate: [quantum numbers n, m, maximum level occupation

number, and minimal N for which tunnelling may occur].

Model Quantum Dot

Let us review a typical QD in hetero-structures con-
sidered above. The important QD parameters are
especially (i) the lateral radius, a, (ii) the thickness of
QD, l, (iii) the confinement potential VQD (conduc-
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tion band offset), (iv) dielectric constants, κ, κQD (v)
electron masses µ, µQD , and (vi) the total confined
charge N . The 2D axially symmetric hamiltonian is

Ĥ = − h̄2

2µi

[
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2

]
+ V (r, z), (1)

where m is the azimuthal quantum number. Let us
invoke the flat disk quantum dots, assuming only one
quantum level in the z-direction, lQD � a. Supposing
further a QD with a number of electrons (thus closer
to a uniform charge distribution), the z-dimension may
be reduced out, and the potential function V (r, z) �
V (r) includes both theQD attraction and electrostatic
repulsion,

V (r) �




−V0 for r ≤ a, and otherwise:
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This potential is shown in Fig. 1 for N = 16.

Results and Discussions

The n-th bound-state wave function of single electron,

Jm

(√
2µQD(En − V0)r/h̄

)
for r ≤ a, (3)

H(1)
m (i

√
2µ(−En)r/h̄) for r ≥ a, (4)

is to be matched numerically at r = a. The ratio of
logarithmic derivatives between the Bessel and Hankel
functions [2] is prescribed as µ2/µ1, which yields the en-
ergy spectrum, {−|En|}n. The electrostatic potential
in Eq. (2) is a perturbation, which effectively lowers the
the confinement potential at large r. The energy levels
En > −Neπ/(2aκQD) thus become open for tunnelling
(cf. Fig. 1). The tunnelling rates are then obtained by
solving the time-dependent Schődinger equation with
the initial wave packet given by Eq. (3), for which
several time-space grid method or the split-operator
technique can be employed. We adopt the Vischer al-

Fig. 2. Tunnelling dynamics in time.

gorithm, since it is sufficiently fast and also unitary.
Absorbing boundary condition is implemented (i.e., a

small negative imaginary part added to V at large val-
ues of r). Invoking the well studied InAs/GaAs QD
system, let us choose the typical QD parameters a =
10 nm, κQD = 15.15, κ = 12.91, µQD = 0.027m0, µ =
0.067m0, VQD = 0.37 eV and N = (0 − 16). Energy
levels follow from Eq. (3), results are shown in Fig.
1. For each level k, the population number 0 ≤ νk ≤
1 is time dependent, νk(t) =

∫
QD

|ψk(r, t)2|dr, with

νk(t) � exp(−λkt). The tunnelling rates λk (in ns−1):

N 11 12 13 14 15 16

n=0, m=2 0.01 0.20 1.03 2.73 5.88 11.5

n=1, m=0 72 101 131 162 195 222

n=0, m=3 389 432 476 519

The total tunnelling rate reads −dN(t)/dt|t=0 =∑
k
Nkλk , where Nk is the number of electrons oc-

cupying the kth level. In Fig. 3, the total tunnelling
rate as a function of charge N is displayed (the above
InAs/GaAs QD parameters were used). The increase

Fig. 3. Electron total tunnelling rate as a function of charge

in the tunnelling rate with N is due to two factors, (1)
increase of the electron repulsion inside QD, and (2)
occupation of higher lying QD states closer to the bar-
rier top. The slope change in Fig. 3 from N = 11, 12 to
N = 13, . . . , 16 is, e.g., due to a newly occupied level
n = 0, m = 3 at N ≥ 13 (cf. Fig. 1). Figs. 1, 3, and
the state-resolved tunnelling rate tables are the main
results used in low temperature device models.
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