

Insulator superconductor transition on solid inert gas substrates

K. Das Gupta, Swati S. Soman, G. Sambandamurthy, N. Chandrasekhar¹

Department of Physics, Indian Institute of Science, Bangalore, India

Abstract

We present observations of the insulator-superconductor transition in ultrathin films of Bi on solid xenon condensed on quartz and on Ge on quartz. The relative permeability ϵ_r ranges from 1.5 for Xe to 15 for Ge. Though we find screening effects as expected, the I-S transition is robust, and unmodified by the substrate. The resistance separatrix is found to be close to $h/4e^2$ and the crossover thickness close to 25 for all substrates. I-V studies and Aslamazov-Larkin analyses indicate superconductivity is inhomogeneous. The transition is best described in terms of a percolation model.

Key words: Bi thin films; Quench condensation; Transport properties

1. Introduction

The insulator-superconductor (I-S) transition has been extensively investigated over the last decade, in a variety of systems such as thin films, [1,2] single Josephson junctions, [3] arrays, [4] and one-dimensional wires. [5] Values of limiting resistance close to the quantum resistance for pairs in one dimensional wires and two-dimensional nominally homogeneous ultrathin films are reported. Differing values of the limiting resistance at the transition have been observed [2] in different systems, and attributed to structure, i.e., homogeneous and granular films are expected to behave differently. A phase-only picture, first proposed by Ramakrishnan [6] and further elaborated by Fisher [7] has been considered appropriate for such systems. A scaling theory of the I-S transition has been developed. [8]

2. Experiments and Results

Fig. 1 shows the evolution of the temperature dependence of the sheet resistance $R(T)$ with thickness for

Bi films on Ge 10 Å thick, which has been deposited on amorphous quartz. A insulator-superconductor transition is immediately apparent. A similar result is obtained for Bi films on solid xenon condensed on amorphous quartz, as shown in fig. 2. A transition from insulating type behavior, to superconducting behavior as the thickness of the films is increased is clear. This type of zero field transition is considered a zero temperature quantum phase transition, controlled either by disorder, carrier concentration, or thickness. The normal state resistance at an arbitrarily high temperature R_N has traditionally been used to parametrize the transition, although it may be weakly temperature dependent above the superconducting transition temperature, and becomes ill defined as the I-S transition is approached. The value of the normal state resistance of a film on the boundary between superconducting and insulating behavior has been referred to as the resistance separatrix, and has been denoted by R_0 . [1,2,5] We obtain R_0 as an algebraic average of the sheet resistances of the last insulating and the first superconducting films, measured at a relatively high temperature 10 K. R_0 is close to $h/4e^2$ for both sets of data. This observation indicates that the value of R_0 is substrate independent, and possibly experiment independent.

The form of the $R(T)$ for these films may lead us to

¹ Corresponding author. E-mail: chandra@physics.iisc.ernet.in

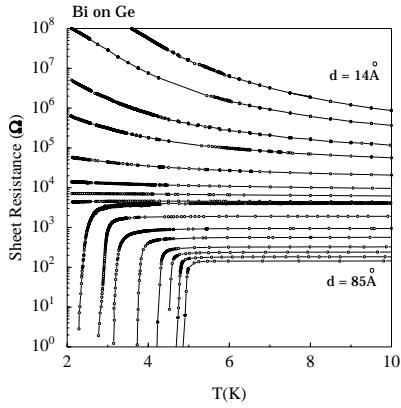


Fig. 1. IST of Bi on Ge underlayer.

the conclusion that these films are nominally homogeneous. Such a conclusion is incorrect as we show below. We find that superconductivity in our films is indeed percolative in nature [11]. Aslamazov and Larkin [9] considered the possibility of fluctuations causing superconductivity. The total conductivity is given by $\sigma = \sigma_N + \sigma'_{2D}$, where σ_N is the normal state dc conductivity, and σ'_{2D} the paraconductivity. Its temperature dependence is similar to that of the magnetic susceptibility at $T - T_c$. They derived the result

$$\frac{\sigma'_{2D}}{\sigma_N} = \frac{e^2}{16\hbar} \frac{R_N}{\tau}. \quad (1)$$

where R_N is the normal state sheet resistance and $\tau = (T - T_c)/T_c$ is the width factor. T_c is the mean field transition temperature. $\tau/R_N = g_{AL} = \frac{e^2}{16\hbar}$ is a constant for all materials. We have evaluated $\tau/R_N = g_{exp}$ for various films. A systematic dependence of g_{exp} on the thickness d is shown in Fig. 3. This parameter deviates

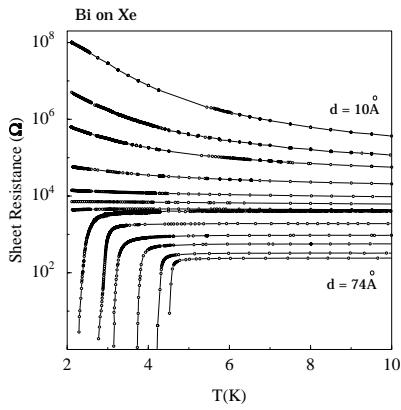


Fig. 2. IST of Bi on Xe underlayer.

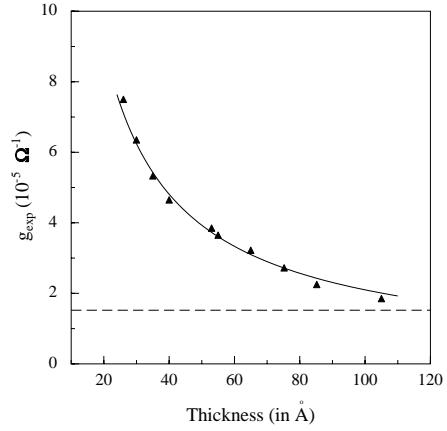


Fig. 3. Variation of the AL parameter with thickness.

from g_{AL} for thinner films. It approaches the AL value as the thickness is increased. It is assumed that theory predicts the same g_{AL} for all films, independent of microstructure. Both the normal state conductance and paraconductance depend on sample shape. Glover [10] has shown that as the microstructure deviates from a uniform rectangular slab, g_{exp} exceeds the AL value. The thinner the film, higher the disorder, larger are the deviations from a slab geometry, and larger the deviation of g_{exp} from the AL value. Hence, films close to the transition are inhomogeneous.

Acknowledgements

The work is supported by DST and UGC, Government of India. KDG thanks CSIR for the research fellowship.

References

- [1] D. B. Haviland, *et al.*, Phys. Rev. Lett. **62**, 2180, (1989).
- [2] J. M. Graybeal, *et al.*, Phys. Rev. B **29**, 4167, (1984).
- [3] J. S. Penttila, *et al.*, Phys. Rev. Lett. **82**, 1004, (1999).
- [4] H. S. J. van der Zant, *et al.*, Phys. Rev. Lett. **69**, 2971, (1992).
- [5] A. Bezraydan, *et al.*, Nature **404**, 3352, (2000).
- [6] T. V. Ramakrishnan, Phys. Scr. **T27**, 24 (1989).
- [7] M. P. A. Fisher, Phys. Rev. Lett. **65**, 923 (1990).
- [8] M. -C. Cha, *et al.*, Phys. Rev. B **44**, 6883 (1991).
- [9] L. G. Aslamazov, *et al.*, Phys. Lett. **26A**, 579 (1968).
- [10] W. Felsch, *et al.*, J. Vac. Sci. Technol. **9**, 337 (1971).
- [11] K. Das Gupta, *et al.*, Phys. Rev. B **63**, 104502, (2001).