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Abstract

Periodic mixed spin chains consisting of spins with magnitudes 1
2

and 1 are studied. A nonlinear σ model method
provides equations which determine gapless phase boundaries separating gapful disordered phases. Phase diagrams
in the space of exchange constants are shown in the cases of periods 6 and 8.
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One-dimensional quantum spin models have been in-
vestigated to understand disordered states with spin
gap. For a uniform spin chain, a disordered state ap-
pears if the spin magnitude is an integer and does not if
it is a half-odd-integer [1]. This result is found by map-
ping the spin Hamiltonian into a nonlinear σ model
(NLSM). The NLSM method has been developed to be
applicable to inhomogeneous spin chains [2–6]. In par-
ticular an unambiguous NLSM method derived a gen-
eral equation to determine phase boundaries for mixed
spin chains with finite period [4].

Among various possibilities, mixed spin chains con-
sisting of spins with magnitudes 1

2
and 1 are mostly

expected to be synthesized. We obtain phase diagrams
in cases of several combinations of 1

2
’s and 1’s by ap-

plying the general NLSM formula. The Hamiltonian is

H =
∑

j

Jj �j ·�j+1, (1)

where �j is the spin with magnitude sj (= 1
2

or 1)
at site j and Jj(> 0) is the nearest-neighbor exchange
constant. We consider the case that Jj is 1 between
spin 1

2
’s, J between spin 1’s, and J′ between spin 1

2
and

spin 1. We restrict ourselves to the case of even period
2b.

The magnetization of the system is determined by
the condition
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b∑
j=1

s2j =

b∑
j=1

s2j−1, (2)

following Lieb-Mattis theorem [7]. If the condition is
not satisfied, the ground state is ferrimagnetic and the
magnetization is

∑
s2j −

∑
s2j−1.

If the condition (2) is satisfied, the ground state is
singlet and Eq. (1) is mapped into an NLSM [4] with
effective action

Seff =

∫∫
dτdx

[
− i

J (0)

J (1)
� · (∂τ�× ∂x�)

+
1

2J (1)

(
J (1)

J (2)
− J (0)

J (1)

)
(∂τ�)2 +

J (0)

2
(∂x�)2

]
, (3)

where

1

J (n)
=

1

2b

2b∑
j=1

(s̃j)
n

Jjsjsj+1
(n = 0, 1, 2) (4)

with s̃j =
∑j

k=1
(−1)k+1sk. The coefficient of the

topological term gives the gapless equation, which de-
termines gapless phase boundaries separating gapful
phases:

J (0)

J (1)
=

h

2
. (h : half odd integer) (5)

In the case of period 4, only the possible array satis-
fying Eq. (2) is (s1, s2, s3, s4) = ( 1

2
, 1

2
, 1, 1). The phase
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Fig. 1. Phase diagrams for the period 6 case. Two phase dia-

grams are drawn in a single graph. The solid line is the phase

boundary for ( 1
2 , 1

2 , 1, 1, 1, 1) and the two dashed lines are

those for ( 1
2 , 1

2 , 1
2 , 1

2 , 1, 1).

diagram for the system has been discussed in detail by
the NLSM method [5].

In the case of period 6, possible arrays satisfying
Eq. (2) are ( 1

2
, 1

2
, 1, 1, 1, 1) and ( 1

2
, 1

2
, 1

2
, 1

2
, 1, 1) [8].

Correspondingly, Eq. (5) reduces to

J ′ =
hJ

(1 − h)J + (1 − 3h)
,

(
h =

1

2

)
(6)

J ′ =
4hJ

4(2 − 3h)J + (2 − h)
,

(
h =

1

2
,
3

2

)
(7)

respectively. These phase boundaries provide the phase
diagrams shown in Fig. 1. Here a few values of h are
allowed because of J > 0 and J′ > 0. There are two
gapful phases in the former, and three in the latter.
Each phase is explained by a VBS picture [9] or its
extension, a singlet cluster picture [5]. For example, in
the former the phase of large J and large J′ is explained
by Fig. 2(a) and the other phase is explained by Fig.
2(b).

In the case of period 8, arrays (1
2
, 1

2
, 1, 1, 1, 1, 1,1),

( 1
2
, 1

2
, 1

2
, 1

2
, 1, 1, 1, 1) and ( 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1, 1) satisfy

Eq. (2) [10]. Equation (5) reduces to

J ′ =
4hJ

4(1 − h)J + (6 − 5h)
,

(
h =

1

2

)
(8)

(a)

(b)

Fig. 2. VBS pictures for the phases of (1
2 , 1

2 , 1, 1, 1, 1) chain:

(a) the phase of large J and large J ′ and (b) the other phase.

A small circle represents a spin 1
2 and an oval does a singlet.

A spin 1 is decomposed into two spin 1
2 ’s.
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Fig. 3. Phase diagrams for the period 8 case. Three phase

diagrams are drawn in a single graph. The solid line is the

phase boundary for ( 1
2 , 1

2 , 1, 1, 1, 1, 1, 1) , the dashed line is

that for ( 1
2 , 1

2 , 1
2 , 1

2 , 1, 1, 1, 1) and the two dash-dotted lines

are those for ( 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1, 1).

J ′ =
4hJ

4(2 − 3h)J + (4 − 3h)
,

(
h =

1

2

)
(9)

J ′ =
4hJ

4(3 − 5h)J + (2 − h)
,

(
h =

1

2
,
3

2

)
(10)

correspondingly. The phase diagrams are shown in Fig.
2. There are two gapful phases in the first and the
second cases, and three in the third.

In summary, we studied mixed spin chains consist-
ing of spins with magnitudes 1

2
and 1 by the nonlinear

σ model method. We provided ground-state phase dia-
grams in the space of exchange constants for the cases
of periods 6 and 8. It is expected that real mixed spin
chains are synthesized, examined experimentally and
compared to the present theory.
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