

Josephson effect in heavy-fermion superconductor CeTIn₅ (T=Co, Ir)

A. Sumiyama ^{a,1}, D. Katayama^a, R. Hata^a, Y. Oda^a, Y. Inada^b, D. Aoki^b, Y. Tokiwa^b, Y. Haga^c, Y. Ōnuki^b

^aDepartment of Material Science, Faculty of Science, Himeji Institute of Technology, Akō-gun 678-1297, Japan

^bGraduate School of Science, Osaka University, Toyonaka 560-0043, Japan

^cAdvanced Science Research Center, Japan Atomic Energy Research Institute, Tokai 319-1106, Japan

Abstract

The Josephson effect between a single crystal CeTIn₅ (T=Co, Ir) and an *s*-wave superconductor has been investigated for CeTIn₅-Cu-Nb junctions. Josephson critical current I_c is observed just below superconducting transition temperature T_c for CeCoIn₅, while the temperature below which I_c appears varies from junction to junction and I_c rises gradually at first for CeIrIn₅, probably reflecting a distribution of the local transition temperature in CeIrIn₅.

Key words: heavy-fermion superconductor; Josephson effect; CeIrIn₅; CeCoIn₅

Recently, a new family of heavy-fermion superconductors: CeIrIn₅ ($T_c=0.4$ K)[1] and CeCoIn₅ ($T_c=2.3$ K)[2] have been discovered. In addition to the difference in a thermodynamic transition temperature T_c , an unusual superconducting property has been reported for CeIrIn₅; the electrical resistivity vanishes at a much higher temperature, $T_0=1.2$ K[1]. In our previous paper, we have reported that the Josephson effect between CeIrIn₅ and Nb is observed well above T_c [3]. In this paper, the Josephson effect of CeCoIn₅ has been measured and compared with the result for CeIrIn₅.

The single crystals of CeCoIn₅ and CeIrIn₅ were cut to the appropriate shape to use as a substrate. The sample surface was rf sputter etched by Ar ion and then Cu (normal metal) and Nb (*s*-wave superconductor) were deposited by rf sputtering technique. The junctions are denoted in such a way as $I \parallel [001]$, on the assumption that the preferred current direction is perpendicular to the crystal surface on which the junction is fabricated. The thickness d_N of Cu and the junction area S are listed in Table 1. The details of the sample

preparation and the measuring technique have been described in our previous paper[3].

We show in Fig. 1 the typical properties of the Josephson effect between CeCoIn₅ and Nb. The current-voltage characteristics in the inset is the typical one of SNS' junctions; the voltage appears at the critical value I_c , and no hysteresis is observed. The quality of the junction is demonstrated in the magnetic field dependence of I_c . A Fraunhofer diffraction pattern, which is expected in a uniform junction, is not observed in Fig. 1; I_c oscillates with no definite period, although the falling envelope is seen with an increase in magnetic field. This pattern suggests that the junction is not uniform, that is, the local critical current density fluctuates spatially.

Table 1
Properties of CeTIn₅-Cu-Nb junctions, where d_N and S are the thickness of Cu and the junction area, respectively.

		Substrate	Current direction	d_N (μm)	S (mm^2)
CeCoIn ₅		[001]		0.8	0.24
CeIrIn ₅		[110]		0.8	0.097
CeIrIn ₅		[001]		0.8	0.11

¹ Corresponding author. E-mail: sumiyama@sci.himeji-tech.ac.jp

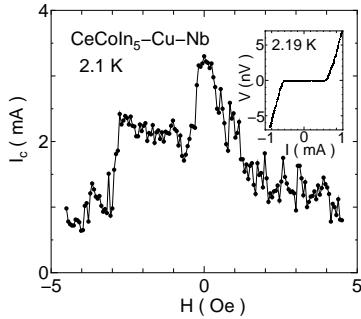


Fig. 1. Typical properties of CeCoIn₅-Cu-Nb junction. Magnetic field dependence of Josephson critical current I_c suggests that the junction is not uniform. The solid line through the data points is guide to the eye. Inset: I – V characteristic showing Josephson critical current.

Figure 2 shows the temperature dependence of the junction resistance R and the Josephson critical current I_c for the CeCoIn₅-Cu-Nb junction. Below the critical temperature of Nb, R consists of the resistance of Nb-Cu boundary, Cu, Cu-CeCoIn₅ boundary, and CeCoIn₅. When the temperature is lowered, a decrease in R due to the superconducting transition is observed at about 2.2 K, followed subsequently by the vanishment of R due to the Josephson effect. A small dip at about 3 K may be ascribed to the superconducting transition of a trace of In metal in CeCoIn₅. As the temperature is lowered, the Josephson critical current increases.

The temperature dependence of I_c differs markedly from that of CeIrIn₅[3], as seen in Fig. 3. Although the linear variation of I_c , which is expected near T_c in the SNS' junction[4], is not clearly seen, I_c appears just below T_c , and increases rapidly for CeCoIn₅. In the case of CeIrIn₅, the temperature at which I_c appears is near the transition temperature to the zero-resistivity state, $T_0=0.8$ K. In addition, I_c increases rather slowly at first with a decrease in temperature.

In our previous paper, we have pointed out the possibility of a distribution of the local transition temper-

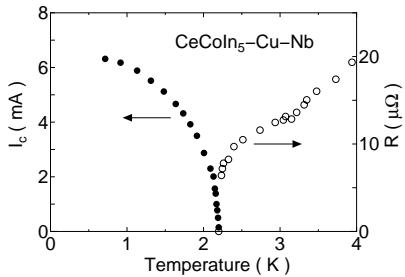


Fig. 2. Temperature dependence of junction resistance R and Josephson critical current I_c for CeCoIn₅-Cu-Nb junction.

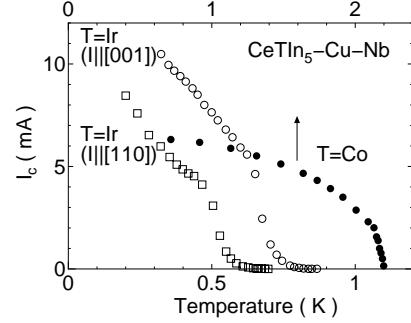


Fig. 3. Temperature dependence of Josephson critical current I_c for three junctions. The top abscissa corresponds to the data for CeCoIn₅.

ature above T_c in CeIrIn₅[3]. The inhomogeneity of superconductivity is reported in ref. [5] also. In that case, the temperature dependence of I_c for CeIrIn₅ may be explained as follows; near T_0 , only a small part of the junction area is superconducting, and small I_c is observed. As the temperature is lowered, more and more part becomes superconductive, and the increasing rate of I_c rises.

In conclusion, the comparison of the Josephson effect has shown that CeCoIn₅ is an ordinary superconductor in that the Josephson critical current I_c appears just below T_c , whereas the inhomogeneous superconducting state in CeIrIn₅ may be reflected on the temperature dependence of I_c .

Acknowledgements

This work was supported partly by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture. One of us (Y. Ō.) was supported financially by the Grant-in-Aid for COE Research (10CE2004) of the Ministry of Education, Science, Sports, and Culture.

References

- [1] C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, J. D. Thompson, *Europhys. Lett.* **53** (2001) 354.
- [2] C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, P. Monthoux, *J. Phys. Condens. Matter* **13** (2001) L337.
- [3] A. Sumiyama, D. Katayama, Y. Oda, Y. Inada, D. Aoki, Y. Tokiwa, Y. Haga, Y. Ōnuki, *J. Phys. Condens. Matter* **13** (2001) L879.
- [4] S. Kobayashi, M. Sato, W. Sasaki, *Proc. of the 12th Int. Conf. on Low Temp. Phys.* (1970) 441.
- [5] A. Bianchi, R. Movshovich, M. Jaime, J. D. Thompson, P. G. Pagliuso, J. L. Sarrao, *Phys. Rev. B* **64** (2001) 220504R.