

# Phase Diagram and Magneto-Transport Properties in $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$ Crystals

H. Kuwahara <sup>a,b,1</sup>, R. Kawasaki <sup>a</sup>, Y. Hirobe <sup>a</sup>, S. Kodama <sup>a</sup>, A. Kakishima <sup>a</sup>

<sup>a</sup>Department of Physics, Sophia University, Tokyo 102-8554, Japan

<sup>b</sup>PRESTO, JST, Tokyo 102-0074, Japan

---

## Abstract

We have investigated electronic transport and magnetic properties of  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystals with controlled band filling ( $0.5 \leq x \leq 0.8$ ) grown by the floating zone method. The detailed phase diagram of over-doped  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  was obtained through magnetization, resistivity, and crystal structure measurements. We have found the phase boundary from an insulator with tetragonal symmetry to a metal with pseudocubic one at high temperatures  $\approx 450$  K. The observed insulator-metal phase transition is attributed to the orbital order-disorder transition.

*Key words:* phase diagram; orbital-ordering; metal-insulator transition; manganite

---

Recently, electron-orbital related phenomena such as orbital order-disorder transitions and orbital waves (or orbitons) attract much interest in the  $3d$  transition metal oxides [1]. For example, major origin of colossal magnetoresistance in manganites is the magnetic-field-induced destruction of the charge/orbital ordered state. Almost two-dimensional (2D) charge dynamics in the over-doped manganite are caused by the ordering of anisotropic-shaped  $d(x^2 - y^2)$  orbital [2]. Experimental evidence for orbiton, which corresponds to the collective excitation of orbital, is lately reported in orbital-ordered states of  $\text{LaMnO}_3$  by using Raman scattering [3]. Thus, the orbital degree of freedom is thought to be an underlying key parameter for the physics of the  $3d$  transition metal oxides including the manganites. We have previously reported a systematic transformation of various orbital-ordered and -disordered states, accompanying the respective spin-ordering features, in  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  studied by neutron diffraction measurements [4]. The system investigated here, colossal magnetoresistive  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$ , shows up complex phase diagram by changing the carrier kinetic energy with doping level  $x$  (see also Fig. 2). In the case of

$x=0.55$ , the 2D charge-transport due to  $d(x^2 - y^2)$  orbital ordering subsists even above Néel temperature ( $T_N$ ), above which anisotropic crystal structure is also expected to still remain. Therefore, we have investigated the charge-transport reflecting the orbital state in a wide temperature range. In this paper we report on the temperature-induced melting transition of orbital ordering and propose a revised phase diagram of over-doped  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystals.

$\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystals were grown by the floating zone method. The grown crystals were characterized by powder X-ray diffraction measurements. We have confirmed that the grown crystals were single phase without any secondary or impurity phase except for the sample showing a phase separation in low temperature near the phase boundary ( $x \sim 0.63$ ). Measurement of  $\rho - T$  curves was performed for the sample heated in a muffle furnace up to 1000 K far above  $T_N$  by using standard four-probe method. We have used a calibrated Pt-Pt+13%Rh thermocouple for monitoring temperature. We have not been able to measure the anisotropic transport properties because of a multidomain structure that is not thoroughly eliminated in the present crystal.

We show in Fig. 1 temperature dependence of resis-

---

<sup>1</sup> Corresponding author. E-mail: h-kuwaha@sophia.ac.jp

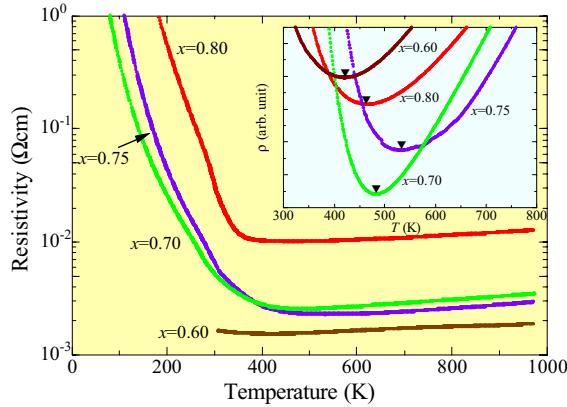



Fig. 1. Temperature dependence of resistivity for  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystals ( $x=0.6, 0.7, 0.75$ , and  $0.8$ ) in zero magnetic field. The inset shows the magnification of the main panel. The phase transition temperature is indicated by an inverted triangle.

tivity for  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystals. In the over-doped manganites with  $0.63 \leq x \leq 0.8$ , in which the chain-type (*C*-type) antiferromagnetic (AF) insulator is stabilized below  $T_N$  ( $\approx 300$  K), resistivity sharply decreases with increasing temperature, and then shows the minimum point ( $\approx 450$  K, depicted in the inset) and gradually rises up. A slight change in activation energy of resistivity has also been detected at  $T_N$ . This insulator-metal phase transition is due to the melting transition of orbital ordering. According to the neutron diffraction measurements [5], lattice structural changes occur at respective temperatures corresponding to the insulator-metal transitions: the tetragonal symmetry (*I4/mcm*) in low temperature phase is changed to the pseudocubic symmetry ( $\overline{R\bar{3}C}$ ) in high temperature one. In other words, *c*-axis elongated crystal due to the rod-shaped  $d(3z^2 - r^2)$ -type orbital ordering can be transferred to the nearly cubic one due to the spherical orbital, which is the admixture of  $d(3z^2 - r^2)$  with  $d(x^2 - y^2)$ . It should be noted that the orbital and charge ordering at these high temperature regions is not static long-range order but dynamical short-range order or a precursor. We cannot observe a direct evidence of charge- and orbital- ordered state such as a superlattice structure in these samples.

We have also confirmed a similar large drop in resistivity at the orbital-ordering transition temperature of  $\sim 780$  K in the parent  $\text{LaMnO}_3$  compound. In the case of  $\text{LaMnO}_3$ ,  $d(3x^2 - r^2)/d(3y^2 - r^2)$ -type orbital ordering was clearly observed by synchrotron radiations [6]. We have concluded that large change in resistivity for the present sample arises from the melting of the orbital ordering by comparing the case of  $\text{LaMnO}_3$ .

Figure 2 shows thus obtained phase diagram for  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  together with the data from Ref. [4]. As reported in Ref. [4], the 2D metallic state with

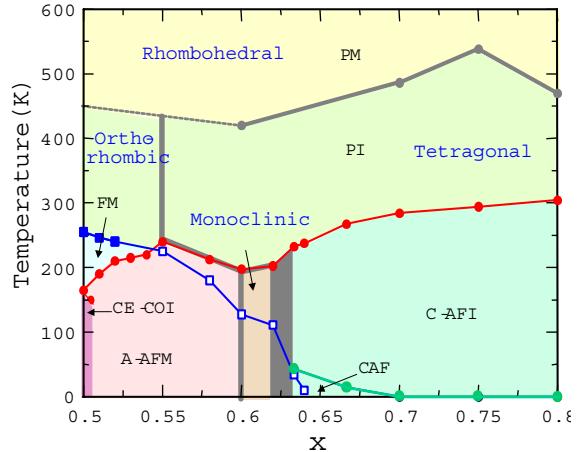



Fig. 2. Electronic, magnetic, and crystallographic phase diagram of  $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$  crystal ( $0.5 \leq x \leq 0.8$ ). The abbreviations mean paramagnetic metal (PM), paramagnetic insulator (PI), ferromagnetic metal (FM), *CE*-type charge-ordered insulator (CE-COI), *A*-type antiferromagnetic metal (A-AFM), canted antiferromagnetic insulator (CAF), and *C*-type antiferromagnetic insulator (C-AFI). Open squares mean a paramagnetic Curie temperature. Thick lines are the crystallographic phase boundaries.

layered-type (*A*-type) AF state appears for  $0.51 \leq x \leq 0.62$ . Doping above  $x=0.62$  further alters the magnetic structures to the chain-type. We have found the phase separation near this phase boundary (broad line near at  $x=0.625$ ) between the *A*-type-AF metal with monoclinic crystal symmetry and the *C*-type-AF insulator with tetragonal one. As shown in the figure, spin ordering is decoupled from the orbital degree of freedom similar to the case of the parent material  $\text{LaMnO}_3$ . The thick line located around  $\sim 450$  K means the phase boundary between the orbital-ordered insulator with tetragonal symmetry in low temperature phase and orbital-disordered metal with rhombohedral one in high temperature phase.

In conclusion, we have observed the resistive anomaly far above  $T_N$  in over-doped manganites, which resulted from the temperature-induced orbital order-disorder transition coupled with the Jahn-Teller lattice distortion. The orbital degree of freedom is thought to be indispensable for understanding this rich phase diagram presented here.

## References

- [1] Y. Tokura, N. Nagaosa, *Science* **288** (2000) 329.
- [2] H. Kuwahara *et al.*, *Phys. Rev. Lett.* **82** (1999) 4316.
- [3] E. Saitoh *et al.*, *Nature* **410** (2001) 180.
- [4] R. Kajimoto *et al.*, *Phys. Rev. B* **60** (1999) 9506.
- [5] R. Kajimoto *et al.*, (private communication).
- [6] Y. Murakami *et al.*, *Phys. Rev. Lett.* **81** (1998) 582.