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Abstract

We investigate the dynamical stripe correlation in the two-dimensional d-p model near 1/8-filling on the basis
of the dynamical cluster approximation combined with the unrestricted fluctuation exchange approximation. We
obtain the fully self-consistent solutions near 1/8-filling. The spin correlation function near 1/8-filling reflects the
existence of the quasi-one-dimensional fluctuation.
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1. Introduction

The quasi-one-dimensional (Q1D) charge order in
high-Tc cuprates (HTC), which is known as a striped
state, has been one of the significant issues for the last
years [1]. Considering the various experimental re-
sults, it seems natural that this order originates from
the strong on-site Coulomb repulsion. By the many
numerical and analytical studies it has been clarified
that the stripe state can be the ground state of the
two-dimensional (2D) Hubbard or d-p model near
1/8-filling [2–6,8,9]. Although at finite temperature
strong fluctuations can destroy long-ranged order,
short-ranged Q1D fluctuations will persist. Thus, we
should consider both antiferromagnetic (AF) spin
fluctuation and Q1D charge fluctuation in a self-
consistent manner in order to see their influences on
the electronic property. In this work we investigate the
electronic correlation function in 2D d-p model on the
basis of the dynamical cluster approximation (DCA)
combined with the unrestricted fluctuation exchange
approximation (UFEA). We calculate the dynamical
spin correlation functions at finite temperature.
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2. Dynamical stripe correlation

We consider only the on-site Coulomb repulsion U
among d-electrons at each Cu site, and divide our
model Hamiltonian into the non-interacting part H0

and the interacting part H1 as

H = H0 + H1 − µ
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(creation) operator for d- and px(y)-electron of momen-
tum � and spin σ, respectively. µ is the chemical po-
tential. The non-interacting part H0 is represented by
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where ∆dp is the hybridization gap energy between
d- and p-orbitals. We take the lattice constant of the
square lattice formed of Cu sites as the unit of length,

and we can represent ζ
x(y)

�
= 2i tdp sin

kx(y)
2 and ζp

�
=

−4tpp sin kx
2

sin
ky

2
, where tdp is the transfer energy be-
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tween d-orbital and its neighboring px(y)-orbital and
tpp is that between px-orbital and py-orbital. In this
study, we take tdp as the unit of energy. The residual
part, H1, is described as

H1 =
U

N

∑

��

∑
�

d†
�+�↑d

†
�−�↓d�↓d�↑, (3)

where N is the number of �-space lattice points in the
first Brillouin zone (FBZ).

We diagonalize H − H1 and derive unperturbed
Green function, gσ

d (�, iεn). With the help of the DCA
concept [10], our unrestricted perturbed Green func-
tion is approximated as Gσ

d (�,�′; iεn) � Gσ

d�
(�, iεn)

if �′ − � ∈ {�}. Here we use an abbreviation, εn =
πT (2n + 1) with n = 0,±1,±2, . . .. T represents the
temperature, and {�} does a cell in the FBZ repre-
sented by a cluster momentum � in the center of the
cell. This perturbed Green function and the unper-
turbed one are combined by the Dyson equation :

[
Gσ

d� (�, iεn)
]−1

= {gσ
d (�, iεn)}−1 δ� − Σσ

� (�, iεn).

(4)

We adopt the UFEA in order to compute our unre-
stricted self-energy [11], Σσ

� (�, iεn). In eq. (4) we use

an abbreviation for the inverse operation, [· · ·]−1, de-
fined so that the identities :

δ� =
∑

�

Gσ

d�−�(� + �−�, iεn)
[
Gσ

d�(�, iεn)
]−1

(5)

are satisfied for all � and n. δ� is Kronecker’s delta. We
have to solve all equations for the fully self-consistent
solution, Gσ

d�
(�, iεn).

We divide the FBZ into 16×16 meshes, and take 8×2
cluster momenta. We prepare 211 Matsubara frequen-
cies for temperature T = 0.030 ∼ 270K. Our other pa-
rameters : tdp = 1.0 ∼ 0.80eV, tpp = 0.60 ∼ 0.48eV,
and ∆dp = 0.0, U = 10.0 ∼ 8.0eV. In our results δ ≡
nh

total − 1 = 0.120, and nh
d/nh

p = 1.64. We adopt Padé
approximating for the method of analytic continuation.
We calculate the dynamical spin correlation function :

I(�, E) = Im
∑
�

χ+−
−� (�, iωm)

×
[
δ� − Uχ+−

�
(� −�, iωm)

]−1
∣∣∣
iωm→E

,(6)

which corresponds to the inelastic neutron scattering
intensity. In Fig. 1 we show its momentum dependence
at E = 0.24. We can find that it reflects a weak Q1D
character of the electronic state. Such a Q1D character
appears around E = 0.22 ∼ 0.25, but in the other
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Fig. 1. I(q, E) at E = 0.24 ∼ 192meV

energy range does not. This Q1D character originates
from the strong Coulomb repulsion.

In summary, in this work we analyze the dynamical
spin correlation in the two-dimensional d-p model near
1/8-filling. We calculate the one-particle spectral func-
tion, the charge correlation function, and the spin cor-
relation function at finite temperature. We obtain the
fully self-consistent solutions taking account of some
certain types of inhomogeneities in our system. The
spin correlation function reflect the existence of the
Q1D fluctuation. In three-dimensional real materials
this fluctuation tends to form the vertical stripe state,
which has been observed in the neutron scattering ex-
periment in La2−xSrxCuO4 [12].
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